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Abstract—In document image classification, some classes of
documents can be easily identified using pixel-level features,
whereas some distinctions can only be made using semantics,
which usually involves a full automatic text transcription. To be
as much efficient as possible, the classification system should be
able to avoid extracting high-level and time consuming features
when they are not necessary to classify with confidence. We
introduce here this issue of sample-dependent feature selection,
which has not been addressed before as far as we know.
We propose a method to tackle this problem, that can be
generalized to any classifier that provides a confidence score
along with its prediction. Empirical results using AdaBoost
on three mail classification problems show that our approach
allows to significantly improve classification efficiency (up to
40% CPU time off) without significant loss of accuracy in
comparison to the baseline.

Keywords-Image document classification, feature selection,
confidence-rated multi-label classification.

I. INTRODUCTION

Mailroom automation is one of the main applications of
document image recognition. For large organizations, the
volume of paper mail coming in daily can easily reach tens
of thousands of documents and should be processed within
a couple of days. The routing of the documents can be
done automatically with an automatic document classifier
embedded in the document management system. The time
needed to automatically route a document is directly linked
to the cost of processing the document: reducing the clas-
sification time allows to reduce the number of computers
needed to process the document flow in time. Reducing the
processing time is therefore an important goal to increase
the competitiveness of an automatic document classification
system.

In this paper, we are interested in reducing the document
classification time by considering the following aspects:

1) Variable adequacy of features over classes: the type
of documents to classify are numerous and can be very dif-
ferent. Official papers, forms, checks, certificates, subscrip-
tion requests, printed and handwritten letters. . . Intuitively,
some classes of structured documents can be easily rec-
ognized with low-level geometric features whereas some
others need a text transcription to be well discriminated
(e.g. semantics are needed to distinguish between letters of
complaint, changes of address and other written requests).

2) Variable cost to extract features: the time needed to
extract the features on the document can be important, but
this time is feature dependent and varies a lot across features.
For example extracting a sub-resolution image usually takes
50 ms, a Document Layout Analysis (DLA) [1] takes 500
ms, and text recognition takes 5000 ms. The classification
time by it-self (after the features have been computed)
is usually lower than 20 ms and can be considered as
negligible.

3) Extraction of features by group: another important
characteristic is that features are often extracted by groups,
and not one by one.

4) Need of a confidence score: For real applications,
error rates higher than a few percents are not acceptable.
Most of the time, such a low error rate is not reached by
state-of-the-art systems and rejection must be done. The
usual way to achieve partial but accurate automation is
to rely on a confidence score provided along with each
prediction: low-confidence system predictions are discarded
to be reviewed by a human agent.

Given these aspects and the time constraints of the digital
document workflows, we propose here to reduce the overall
processing time by avoiding to extract high-level features
when it is not necessary, i.e. when a high-confidence pre-
diction can be yielded with low-level features. We claim
that feature extraction should be sample-dependent, with a
view to maintaining the same overall accuracy while gaining
significantly in efficiency.

To the best of our knowledge, sample-dependent feature
selection does not match any classical machine learning
problem. A lot of feature selection methods have been pro-
posed, including wrappers [2], filters [3], gradient descent-
based methods [4] and Boosting methods [5]. All these
approaches aim at learning the minimal subset of features
that are relevant to classify as much accurately as possible.
The main motivation is often to have faster and/or more
accurate learning procedure. But these feature selection
methods disregard the second and third above-mentioned
aspects: they assume that all features have the same cost
of extraction, and cannot explore the fact that features are
extracted group by group.

Some different settings involving feature selection have
already been investigated: [6] tackles on-line learning feature
selection, for scenarios where features are extracted one at a



time (but during learning, not at test time). Group Lasso [7]
can be used to select some groups of features among a huge
number of features. But Lasso approaches assume that all
features have the same cost of extraction.

In state-of-the-art feature selection methods, all the se-
lected features are extracted for all the samples at test time.
Here we consider the problem of optimizing the overall
classification test efficiency and we propose a method of
sample-dependant feature selection to achieve this.

II. PROPOSED METHOD

The principle of the system we propose is to embed
a classification learning method in a cascade that incre-
mentally analyzes classification confidence estimates at the
same time as features are extracted, with a view to possibly
stoping extracting features prematurely. The principle is
general provided that the embedded classifiers output a target
class ŷi along with a confidence score

f
(i)
ŷi

(x) = f (i) (ŷi | {x0, · · · ,xi}) (1)

where x is an input sample, and xk are the corresponding
subsets of features used to train the classifier. This confi-
dence score can be a posterior probability estimate, but it
does not have to be bounded nor normalized.

Algorithm 1 Sample-dependent feature selection for fast
confidence-rated classification
• Inputs

- One test sample, x
- N “group-of-features” extractors xi, ranked by in-

creasing CPU needs.
• Set of free parameters

- N confidence-rated classifiers f (i), trained on all first
groups of features {x0, · · · ,xi},

- N− 1 confidence thresholds τi,
- N confidence classifier calibration functions ϕi.

• Outputs
- Predicted class Ŷ (x),
- Back-end confidence FŶ (x).

for i := 1 to N do
Compute the group of features xi.
Compute outputs of the ith classifierf (i) (1).
if i = N or f (i)ŷi

(x) ≥ τi then
terminal step I := i
Return

Ŷ (x) := ŷI (2)

FŶ (x) := ϕI ◦ f (I)ŷI
(x) (3)

end if
end for

The proposed test procedure is summarized in algo-
rithm 1. The model handles growing sets of features by

making a cascade out of several confidence-rated classifiers
trained on fixed sets of features. At each step of the cascade,
a decision is made: either to continue extracting higher-level
features, or to trust the current classification prediction and
terminate. This choice is made by comparing the confidence
score (1) to a threshold τi. Let I(x) denote the step at which
Algo.1 terminates and answers on sample x. The expected
behaviour is to take a decision on easiest samples using only
the first subsets of features (I(x) ≈ 1), and to rather rely on
the classifiers trained on all features to answer on the hardest
samples (I(x) ≈ N).

An important point of Algo.1 is the computation of
a back-end confidence based on the embedded classifiers
confidence estimates. If we imagine that score (1) gauges
the posterior probability of the class prediction to be true,
no correction would be needed (ϕi would just be identity).
But for most of classifiers families, nothing guarantees that
confidence produced with different features will be com-
parable. Hence the possible presence of back-end classifier
calibration function ϕi.

Note that Algo.1 can be seen as a decision tree where each
node of the tree has only one descendant. It is justified in
our experimental setup where feature extraction times vary a
lot over groups of features (with factors of 10): we know in
advance the order in which features should be computed and
processed to achieve optimal overall efficiency, and groups
of features x0, · · · ,xN are simply ranked by increasing cost.
If several groups of features have similar costs, the approach
can steadily be generalized by learning a tree with a wider
topology.

By itself, our sample-dependent feature selection method
relies on confidence scores provided by a classification
method. We discuss the desirable properties for the em-
bedded classifiers f (i) in section II-A. Threshold parame-
ters τi and calibration functions ϕi are typically tuned on a
validation set, separate from the training set used to learn
embedded classifiers. Given our classification setting, we
actually divide the overall optimization problem into two
sub-problems: the trade-off between accuracy and efficiency
by optimizing thresholds τi (section II-B), and the back-
end confidence estimation which involves calibration ϕi

(section II-C).

A. Choice of embedded classification learning method

Algorithm 1 relies on the quality of the confidence scores
estimated by embedded classifiers f (i). See [8] for a good
overview on confidence estimation. Here, the confidence
scores do not need to be posterior probability estimates, but
they must be relevant to rank predictions by uncertainty.

Besides, note that the meta-classifier of Algo.1 chooses
the best candidate class (2) and estimates the back-end
confidence score (3) by considering only the expertise of the
last classifier f (I), and ignores the outputs of previously used



classifiers {f (k)}k<I . In fact, we assume here that the clas-
sification model is able to learn how to optimally combine
all available features. It means that if k < i, then not only
classifier f (i) performs at least as well as the classifier f (k)

with less features, but also no significant gain in accuracy
could be achieved by combining the scores f

(I)
ŷi

(x) with
the previously computed scores {f (k)ŷi

(x)}k<I . In practice,
improving accuracy by adding input features into a single
model is not guaranteed, for instance because of the curse of
dimensionality. For the cases of embedded classifiers that do
not necessarily improve accuracy as the set of input features
grows, Cascade Generalization [9] can be a solution to fulfill
this property.

In this work, we chose Adaptive Boosting (AdaBoost) [5]
because it is designed to incrementally select and combine
features that are de facto heterogeneous1. Output confidence
scores of AdaBoost classifiers are learned so as to minimize
an exponential loss (upper bound of the Hamming loss). It
has already been observed that AdaBoost not only achieves
good classification accuracy, but is also well suited to
optimize the area under the ROC curve [10] which is an
indicator of the confidence scoring quality. AdaBoost has
already been integrated into cascade systems with success
in the past, e.g in [11] where the goal is to reduce false
positive rates.

B. Optimization of overall efficiency

In this section, we discuss how to optimize threshold
values τi of Algo.1 to improve the system efficiency (with
respect to the common approach which consists in using
the classifier f (N) straightforwardly). To define the corre-
sponding loss function, we introduce three types of cost
parameters c0, c−, and c+ described in table I. The sample

Table I: Description of costs used to choose thresholds τi
Case description for Algo.1

Back-end Could the answer be true Associated
answer is with more/less features? sample cost

NO 0
CORRECT yes, with LESS features c0

yes, with MORE features 0
NO 0

WRONG yes, with LESS features c−

yes, with MORE features c+

cost can take five values (either 0, c0, c−, c+ or c− + c+)
and the overall objective loss function is the average of these
sample costs:

LX(τ0, · · · , τN−1) = c0
X1 ∩ X−1


+c−

X0 ∩ X−1
+ c+

X0 ∩ X+
1


(4)

where
 · denotes the cardinality of a set and

1In the application of interest, features are numerical data with different
distribution shapes, as well as symbolic and variable-length data (text).

• X1 is the set of correctly classified samples,
• X0 is the set of errors,
• X−1 is the set of samples that could have been well

classified with less features, and
• X+

1 is the set of samples that could have been well
classified with more features.

Note that cost parameter c0 concerns efficiency only, c−

concerns both efficiency and accuracy, and c+ concerns
accuracy only. As only the relative ratio of these parameters
affects the optimum of the loss function, we can arbitrarily
set c+ = 1, and it remains two hyper-parameters (c0, c− ≥
0). Tuning these two parameters amounts to choosing a
trade-off between accuracy and efficiency.

The loss function (4) is not convex neither differentiable
with respect to threshold parameters τi. In our application,
we optimize it using a grid search, which can be afforded
given that there are a few groups of features (N is small).

C. Confidence estimation

We remind that the typical use of this back-end confidence
score is to reject predictions that are too uncertain, by
comparing the score to a threshold. Such classification with
reject can be seen as a ranking problem. We can consider
the following loss function:

LX(FŶ (·)) =
∑
x∈X

{
0 if x is well classified
rankX(FŶ (x)) otherwise (5)

where rankX ≥ 1 is the rank of the scores in increasing
order over X.

Calibration functions ϕi can be chosen among non-
parametric or parametric sets of functions. Non parametric
methods may over-fit the validation set. So we choose here
to focus on parametric methods, and define the calibration
function as a classifier-dependent sigmoidal function:

ϕi

(
FŶ (x)

)
= sigm

(
αiFŶ (x) + βi

)
, αi > 0 (6)

Determining the classifier-dependent parameters αi, βi is
critical to have reliable back-end confidence scores. We learn
them using an optimized grid search to minimize (5).

III. EXPERIMENTS

A. Databases

1) ISRI-OCRtk: This public database was originally col-
lected to evaluate the OCR performance [12]. But the 2889
image documents are labeled with 7 different classes that
we use to make a classification task: Department of Energy
reports, annual reports, legal documents, business letters,
magazines, US newspapers and Spanish newspapers. Results
presented on this database are obtained by 10-times repeated
random validation, with 60% of training data, 20% of
validation data and 20% of test data.



2) A2iA-Ima: This database is composed of images of
paper mails addressed to a bank. There are 15 different
classes of documents: ID cards, passports, several classes
of invoices, receipts and tax notification, and several types
of handwritten letters. The database has been split into
train / validation / test sets (resp. 20752 / 5186 / 6182 sam-
ples). Both training and validation datasets contain more
than 10% label errors whereas the test set has been entirely
double-checked.

3) A2iA-Tepa: This database is composed of images of
paper mails addressed to an insurance company. These docu-
ments are very diverse and there are 127 classes with a very
unbalanced distribution (7 classes fill 60% of the images).
Some classes are very close and not always well defined,
such as “consumer letters” and “accompanying letters”. The
database has been split into a train / validation / test sets
(resp. 57215 / 14304 / 8399 samples).

B. Document Front-end processing and classification
We used the following set of features for training the

document classifier (approximate CPU times per document
are indicated in parentheses):

1) Image sub-resolution (50 ms): This first set of
features is a simple sub-resolution image of the original
document. It is computed as the average pixel values and
we used a 6× 8 regular grid.

2) Document layout analysis (DLA) [1] (500 ms): The
document image is segmented in zones corresponding to
geometrical lines, printed text and handwritten text. We then
compute some statistics on each kind of zone, such as the
number and the total surface.

3) Pre-defined document type detectors (pre-detect) (1
sec): For A2iA-Ima we also use predefined detectors spe-
cialized to recognize bank checks, cursive letters, printed
letters and different types of official papers which are part
of the dataflow. For a given document image, each detector
provides a score used as a single numerical feature (as in a
cascade [9]).

4) Full automatic text transcription (5 sec): The au-
tomatic transcription provides additional inputs: a bag-of-
words with some errors/noise (the word error rate lies
between 15% and 50%). For efficiency concern, only the
10 000 most frequent words in the training set are used for
classification.

We chose Real AdaBoost MH [5] as the reference classi-
fier (cf. justification in section II-A), and the boosted weak
learners are:
• numerical stumps, whose outputs depend on the com-

parison of a numerical feature value to a threshold.
• word stumps, whose outputs depend on the presence or

absence of a given word within the text transcription.

C. Results
For the three databases, Fig.1 presents classification re-

sults of AdaBoost without sample-dependent feature selec-

(a) ISRI-OCRtk

(b) A2iA-Ima

(c) A2iA-Tepa

Figure 1: Baseline AdaBoost classification results, with several
(growing) sets of features.

tion: the baseline (classifier f (N) in Algo.1) along with
intermediate results obtained by selecting only a subset of
features (classifiers f (i), i < N). The curves plot micro-
averaged recall and precision [13] for different values of the
rejection threshold: the more concave the curve, the better
the quality of the confidence scoring. These results corrob-
orate the hypothesis of section II-A: the more input features
there are, the more accurate the classification is. A2iA-
Ima presents the most favorable characteristics for sample-
dependent feature selection: for the four sets of features, the
classification results range nicely from sub-resolution to full
feature extraction, and confidence scores are reliable. A2iA-
Tepa is less favorable since there is a big gap between using
text transcription or not. Further statistical analysis reveals
that some classes can be accurately detected with only sub-
resolution, for example the ID cards in A2iA-Ima, whereas
some other classes need the semantic information from the
text transcription to be recognized, for example the business
letters in ISRI-OCRtk and letter classes in A2iA-Tepa.

The classification results of the proposed sample-
dependent feature selection method are presented in Fig.2
beside the results of the baseline. The different versions of
the proposed approach (c1, c2, . . . ) only differ by the values
of cost parameters c0/c+ and c−/c+ in (4). Bar charts on
the left show the overall classification test CPU times and
error rates.

If we accept only a very small performance degradation,
we can save 20% of CPU time for ISRI-OCRtk (c1), 40%
of CPU time for A2iA-Ima (c3) and 10% of CPU time for
A2iA-Tepa (c1). Of course, this gain depends on the class
distribution (ratio of formatted documents,. . . ).



(a) ISRI-OCRtk

(b) A2iA-Ima

(c) A2iA-Tepa

Figure 2: (left) Overall test CPU times, (center) misclassification
rates and (right) recall/precision curves, for the baseline and for
several levels of sample-dependent feature selection (varying c0
and c−). 95% confidence interval are indicated.

Two aspects may explain why we can save more CPU time
on the A2iA-Ima database compared to the other databases.
First, as noticed previously, each set of features contributes
almost equally to the increase of the classification rate. For
some kind of documents, a good classification rates can be
obtained with low level features. Second, the precision/recall
curves of each set of features is also more favorable : the
precision rate decreases slowly with an increasing recall rate,
which means that the confidence estimation is good. The
situation is less favorable for the two other databases.

Note that even if the overall accuracy can be preserved
with a more efficient system based on sample-dependent
feature selection, recall-precision curves indicate that con-
fidence scores can be significantly less robust, especially
in the region of low and medium confidence, despite the
approach described in section II-C.

IV. CONCLUSIONS

We presented a novel classification problem setting mo-
tivated by industrial constraints in image document catego-
rization. Due to the time constraints on the classification
process, we argue that it is be essential to avoid extracting
costly features when they are not necessary. This is a feature
selection problem, but contrarily to methods in the literature,
the selection is done at test time and is dependent on the
current sample to be classified. We proposed a method which
permits to reduce the CPU time from 10% up to 40%
without degrading the accuracy, on three databases of real
document images. By providing baseline results on a public
document database, we would like to foster the research of
new algorithms in this new classification setting.
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