

HYBRID WORD/PART-OF-ARABIC-WORD LANGUAGE MODELS FOR ARABIC TEXT DOCUMENT RECOGNITION

Mohamed Faouzi BenZeghiba, Jérôme Louradour and Christopher Kermorvant

ABSTRACT

This paper describes a simple approach to generate an efficient hybrid word/Part-of-Arabic-Word (PAW) Language Model (LM). Less frequent words are decomposed into PAWs, which are then with the most frequent words to generate a hybrid flat language model. Evaluation experiments are conducted under three different tasks (Maurdor printed/handwritten and Khatt). Hybrid LMs, systematically, outperform word LMs, Moreover, they require less memory.

MOTIVATION

Issues:

- Language model is a main component in State-of-the-art Arabic text recognition systems.
- Issue: Detection and the recognition of Out-Of-Vocabulary words (OOV)
- Increasing the vocabulary might increase the confusability.

Some solutions:

- Use of sub-word based LMs.
- Question: What is the best sub-word unit?
- ► Character LM: higher order character LMs might outperform word LMs.
- ► Longer sub-word unit to capture a wider context is more appropriate.
- Our investigation: Use of Part-of-Arabic-Word (PAW).
- Widely used in Arabic natural language processing applications.

PAW decomposition:

- ► Arabic script is cursive.
- ► Words containing one or more of these six characters can be decomposed into PAWs.
- ► Example: The word المتدرَسَة is decomposed into four PAWs: المتدرَسَة and مَنة.

THE PROPOSED HYBRID LM

LM generation:

- ► Text normalization and tokenization: including space tokenization
- Word vocabulary extraction and word LM generation.
- ► PAW decomposition: applied to less frequent words in the word vocabulary
- Hybrid vocabulary generation: Integrating the most frequent words and the resulted PAWs.
- ► Hybrid flat n-gram LM generation

Example:

مَعرِفَة النّص العرّبِي المتخطوط (b) (b) النص إ العربي إ الخطوط (b)

معر | فة | ا | النص | ا | العر | بي | ا | الخطو | ط (C)

Advantages:

- ▶ Simple decomposition rule.
- ► Reduction in vocabulary size.
- ▶ Reduction in OOV rate.
- ▶ Better estimation of the n-gram statistics.
- ► Results: Better prediction capabilities of the LM.

Post-processing:

- ► Removing the normal space (to connect PAWs).
- ► Replacing the space token with normal space.

SYSTEM DESCRIPTION

- ▶ Processing: Text line detection for Maurdor data.
- ► Optical models: Multi-Directional LSTM Recurrent Neural Network
- ▶ Dropout for regularization.

- LM models: Different statistical LM types with diffrent orders.
- ► Decoding: Performed with Kaldi toolkit.

EXPERIMENTAL RESULTS

KHATT database:

Effect of the LM order

► Final results

nai results								
Word Error Rate								
LM data		LM type						
	Dataset	Word	Hybrid	PAW				
	Dev	37.7	31.5	31.6				
Train	Test	40.2	33.1	33.0				
Train+Dev	Test	37.8	31.3	30.9				
OOV rate								
Train+Dev	Test	24.9	9.1	9.1				

Maurdor printed

► Effect of the LM order

► Final results

Word Error Rate							
LM data		LM type					
	Dataset	Word	Hybrid	PAW			
	Dev	20.2	18.6	19.6			
Train	Test	26.6	22.2	23.5			
Train+Dev	Test	26.5	22.2	23.1			
OOV rate							
Train+Dev	Test	15.4	8.4	7.9			

Maurdor Handwritten

Effect of the LM order

► Final results

Word Error Rate (%)							
LM data		LM type					
	Dataset	Word	Hybrid	PAW			
	Dev	34.0	32.0	32.4			
Train	Test	35.1	33.4	34.5			
Train+Dev	Test	34.8	33.2	33.5			
OOV rate (%)							
Train+Dev	Test	15.1	10.8	10.4			

PERSPECTIVES

- ► Hybrid LM for large vocabulary task.
- ► Hierarchical LMs incorporating words, PAWs and characters.
- ► Combination of several word decomposition approaches.