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ABSTRACT

This paper describes a simple approach to generate an efficient hybrid word/Part-of-Arabic-Word (PAW) Language Model (LM). Less frequent words
are decomposed into PAWSs, which are then with the most frequent words to generate a hybrid flat language model. Evaluation experiments are
conducted under three different tasks (Maurdor printed/handwritten and Khatt). Hybrid LMs, systematically, outperform word LMs, Moreover, they
require less memory.
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SYSTEM DESCRIPTION

» Processing: Text line detection for Maurdor data.
» Optical models: Multi-Directional LSTM Recurrent Neural Network
» Dropout for regularization.

» LM models: Different statistical LM types with diffrent orders.
» Decoding: Performed with Kaldi toolKit.

EXPERIMENTAL RESULTS

KHATT database: Maurdor printed Maurdor Handwritten
» Effect of the LM order » Effect of the LM order » Effect of the LM order
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» Final results » Final results » Final results
Word Error Rate Word Error Rate Word Error Rate (%)
LM data LM type LM data LM type LM data LM type
Dataset Word Hybrid PAW Dataset Word Hybrid PAW Dataset Word Hybrid PAW
Dev 37.7 31.5 31.6 Dev 20.2 18.6 19.6 Dev 34.0 32.0 32.4
Train Test 40.2 33.1 33.0 Train Test 26.6 22.2 23.5 Train Test 35.1 33.4 34.5
Train+Dev Test 37.8 31.3 30.9 Train+Dev Test 26.5 22.2 23.1 Train+Dev. Test 34.8 33.2 33.5
OQV rate OOQV rate OQV rate (%)
Train+Dev Test 24.9 9.1 9.1 Train+Dev Test 15.4 8.4 7.9 Train+Dev. Test 15.1 10.8 10.4

PERSPECTIVES
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