
From isolated handwritten characters to fields recognition : There’s many a slip

twixt cup and lip

Christopher Kermorvanta, Anne-Laure Biannea,b, Patrick Marty a, Farès Menasri a

aA2iA Paris

40 bis rue Fabert, 75007 Paris, France
bTELECOM Paris Tech/TSI

46 rue Barrault F-75634 Paris Cedex 13,France

{ck,alb,pma,fm}@a2ia.com

Abstract

Recognition of handwritten characters has been a pop-

ular task for the evaluation of classification algorithms for

many years. Looking at the latest results on databases such

as USPS or MNIST, one could think that character recog-

nition is a solved problem. In this paper, we claim that this

is not the case for two reasons : first because the classical

databases for digit recognition are realistic but too simple

and second because digit recognition is not a real-world

task but only a part of it. In this paper, we contribute to a

better understanding of these two aspects with new results.

In a first part, we compare three state-of-the-art recognizers

on a digit recognition task extracted from a real world ap-

plication and show that the error rates on this database can

not be extrapolated from MNIST. Then, in a second part, we

present and evaluate a system designed for an industrial ap-

plication based on character recognition : document iden-

tification with floating field recognition.

1. Introduction

Recognition of handwritten digits or characters has been

used as a task for the evaluation of classification algo-

rithms in Machine Learning for many years. Several as-

pects have made digit recognition a popular task amongst

machine learning researchers. First, large databases of digit

images have been provided to the community, for exam-

ple USPS[5], MNIST[7] or RIMES[4]. Moreover, the split-

ting in train and test data is usually provided, which makes

the classification results directly comparable . Second, the

nature of the classification problem is challenging for re-

searchers : the variability of writing is large and the dimen-

sionality of the problem is high if one considers pixels as

features. Finally, the problem is important since it has many

industrial applications : bank check processing, postal ad-

dress recognition, automatic invoice processing, etc.

In fifteen years of research, great progress has been

made and the latest results on handwritten digit recogni-

tion databases such as MNIST or RIMES seem to suggest

that the problem is solved : 0.4% error rate on MNIST

[8], less than 1% error rate on RIMES[4] digit recognition

task. However, we think that these results are misleading.

First, since these databases have been used in experiments

for many years, one can suspect that a hill-climbing ef-

fect has occurred so that the current best classification algo-

rithms and their best parameters might be specific to these

databases. Second, thinking that digit recognition is a real-

world task is incorrect. In real applications, digit recogni-

tion is only one part of the complete recognition process,

amongst document layout analysis, orientation correction,

skew and slant correction, field segmentation, rejection of

non-characters, etc. It is well known that these steps must

be optimized all together in order to build a complete indus-

trial application such as a bank check recognizer [3].

In this paper, we contribute to a better understanding of

these two aspects with new results. First we evaluate three

state-of-the-art character recognition systems on a database

of character images extracted from an industrial applica-

tion and show that results previously published on USPS

or MNIST can not be extrapolated. Second we present the

architecture and the performance of a recognizer dedicated

to a real-word task based on character recognition, task we

call floating field recognition. We show that several aspects,

other than the error rate on isolated characters, have a major

impact on the performance of the system : the localization

of the field, its syntactical structure, the presence of a con-

trol key and the confidence score associated to the recogni-

tion result.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.91

1031

Figure 1. Examples for the A2iA-AV database.

2 Handwritten digits recognition : from real-

istic data to real data

In this section, we present a database extracted from

a real-world application and evaluate three state-of-the-art

classifiers on a digit recognition task both on a realistic but

clean database (MNIST) and on our noisy database (A2iA-

AV-Digit).

2.1 MNIST and A2iA-AV databases

The MNIST database [7] is a very popular database of

isolated handwritten digits used for the evaluation of many

machine learning algorithms. The database is composed of

60 000 examples in the training set and 10 000 in the test

set. Simard et al. [8] have shown that the performance of

a digit classifier can be improved by increasing the amount

of training data with elastic distortion of the original data.

They have proposed an algorithm to generate artificially dis-

torted data. We have extended the MNIST train set by ap-

plying 4 random transformations to each one of the 60 000

images.The resulting training set is composed of 300 000

snippets and is referred to as the Extended-MNIST database.

We have collected a database of images of Italian fiscal

forms. These forms contain several alpha-numerical fields:

name, address, dates, amounts, fiscal code. We have manu-

ally annotated 36 337 forms with the location and the value

of the fiscal code field. We refer to this database as A2iA-

AV-Field. The code is composed of 16 alpha-numerical

characters, either printed or hand-printed. The syntacti-

cal structure of the code is known and follows the regular

expression L6D2S[0 − 7]DLD3L where L = [A − Z],
D = [0− 9] and S = [A, B, C, D, E, H, L, M, P, R, S, T].
The last character is a control key which validates the se-

quence of the 15 first characters.

The main difficulty of the recognition task is that the im-

age quality was very low and the field was very noisy : the

lines of the form were degraded , the scanning process dis-

torted the image or the image was faxed, to name a few of

the difficulties. As a result, since our usual cleaning proce-

dures could not be used to extract clean characters, we de-

cided to train the character recognizer directly on the noisy

images.

We have extracted snippets of characters using the field

annotation : each field was split into 16 zones of equal size.

We have kept only snippets corresponding to digits. This

process has led to a database of 250 257 snippets of dig-

its. We refer to this database as A2iA-AV-Digit. We have

randomly split the database in 240 257 images for training

and 10 000 images for testing. We also randomly selected

60 000 examples from the train set to define a subset whose

size is comparable to MNIST train set. We refer to this

database as A2iA-AV-Digit-60k

2.2 Compared classifiers

We have compared three classifiers amongst those that

achieve the best classification results on MNIST : Support

vector machines with RBF kernel[2], k-nearest neighbors

with image distortion models[6], and Convolution neural

networks[7].

SVM : The SVM classifier[2] was trained using the

LibSVM1 software package. We have used a Radial Ba-

sis Function kernel given by K(x, x′) = exp(−γ||x −
x′||)2). We have optimized the penalty parameter C and

the radius of the RBF kernel γ by using cross-validation

on the train set. The range of values tested were C ∈
[21, 23, 25, 27, 29, 211] and γ ∈ [2−3, 2−5, 2−7, 2−9, 2−11]
and then refined with smaller steps around the best values.

The best values of the hyper-parameters were C = 28 and

γ = 2−5.2 for MNIST, C = 25 and γ = 2−5 for Extended-

MNIST, C = 25 and γ = 2−7.5 for A2iA-AV-Digit-60k

and C = 25 and γ = 2−7.5 for A2iA-AV-Digit.

kNN with image distortion models : Keysers et al.[6]

have proposed several image distortion models and applied

them to digit recognition and medical image classification.

One of them, the Image Distortion Model (IDM), is a com-

putationally simple model yet achieving good results on

several machine vision tasks including digit recognition.

We have built a classifier based on IDM using the W2D

software package provided by C. Gollan 2. In our experi-

ments, we used the output of horizontal and vertical Sobel

filters on a 3*3 context (18 coefficients) as local features

and the Euclidean distance to compare the feature vectors.

Once the distance between the test images and all the refer-

ence images were computed, we used a k-Nearest Neighbor

classifier to predict the class of the test image. We have es-

timated the best value for k ∈ [1, 20] by cross-validation on

the train set. It is worth noting that this classifier did not

scale well when the size of the training size increased since

it required to compute the distance between each test exam-

ple and all the training examples. This model could not be

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
2http://www-i6.informatik.rwth-aachen.de/˜gollan/w2d.html

1032

trained and tested on the large database Extended-MNIST

and A2iA-AV-Digit.

Convolutional neural network : This model, based on

alternating layers of convolutions and subsampling, has

been originally proposed by Le Cun [7] and successfully ap-

plied since then to several image recognition tasks amongst

which digits recognition [8]. We have modified the archi-

tecture of the model proposed by Le Cun in order to replace

the Gaussian based classifier by a multi-layer perceptron

(MLP). The input of the classifier was the image to be clas-

sified and the output is a vector of probabilities associated to

each class of the problem. For example, in the case of digit

recognition, the size of the output vector is 10. Internally,

our model was composed of 6 layers : 5 layers for the ex-

traction of features (3 convolutions and 2 subsampling) and

1 hidden layer with softmax outputs for the MLP classifier.

The classifier was trained iteratively using stochastic

back-propagation of the gradient . The cost function used

during training was the Kullback-Leibler divergence be-

tween the target value and the output of the MLP.

2.3 Recognition results

The recognition results of the three classifiers on 4 dif-

ferent databases is presented on Table 1. Our results on

MNIST are coherent with those reported on this database

with the same models3. As expected, the extension of the

MNIST training set with elastic distortions allowed to re-

duce the error rate of both the Convolution Network and

the SVM classifier. For computational reasons, the KNN-

IDM model could be tested neither on the Extended-MNIST

database nor on the A2iA-AV-Digits database.

Overall, the error rates obtained on the A2iA-AV-Digit-

60k database are dramatically higher than on MNIST. Two

classifiers with less that 1% error rate on MNIST, the Con-

volutional Network and the kNN-IDM, achieve respectively

2.27% and 11.57% error rate on A2iA-AV-Digit-60. The

error rate of the SVM-RBF classifier also dramatically in-

creases from 1.43% to 9.67%. It is important to note that

when the amount of training data increases, the error rate

decreases as shown by the results on the A2iA-AV-Digit

database. The error rate reduction reaches almost 50% for

the convolutional network and the SVM classifier.

To conclude, these results show that one can not ex-

trapolate the recognition results obtained on MNIST to a

real world digit database with more noise. Classifiers with

very similar results on MNIST obtained very different re-

sults on our database, the best classifier on MNIST giving

the worst result. We think that this result should encour-

age researchers to be more critical in using MNIST or an

3http://yann.lecun.com/exdb/mnist/

ConvNet SVM-RBF kNN-IDM

MNIST 0.88±0.18 1.43±0.23 0.86±0.18

MNIST extended 0.65±0.16 0.92±0.19 -

A2iA-AV-Digit-60k 2.27±0.29 9.67±0.58 11.57±0.63

A2iA-AV-Digit 1.14±0.21 5.12±0.43 -

Table 1. Error rate (with binomial confidence

intervals at 0.05%) of the three compared

classifiers on the test set of four databases.

equivalent database to evaluate their algorithms. In the next

section, we present and evaluate a system based on charac-

ter recognition dedicated to the recognition of a complete

character field.

3 Handwritten floating fields recognition

The recognition of isolated digits is never a task by itself

in applications but is always one part in a more complex

task. In this section, we define a task which is based on

character recognition : floating field recognition.

3.1 Floating field recognition task

On the database A2iA-AV, the real task is the identifi-

cation of the sender of the fiscal form. Amongst all the

informations available on the form, the main identification

number is the fiscal code, which is uniquely associated to

each possible sender of the form. The identification of the

sender of the form can thus be achieved by recognizing the

fiscal code. However, the images show a large variability :

position of the form during scanning (the scanning is not

normalized), layout of the forms (several types of forms

exist), scanning noise and deformation of the image. This

variability induces that the location of the fiscal code on the

image is not fixed, and that the location of the field is itself a

problem, even if one can restrict the area in which the field

is expected to be located. We refer to this task as a floating

field recognition task, which is composed of 2 sub-tasks :

the field location and field recognition.

3.2 Field location

The goal of this task was to locate the upper left corner

of the fiscal code field, shown as a red square on Figure 2.

We have restricted the search zone for the fiscal code field

to an area of 300 pixels width and 200 pixels height. The

detection of the upper-left corner of the field was based on

the detection of two keywords : Codice and Fiscale. The

detection of these two keywords was independent and was

combined to predict the location of the field. The upper-left

1033

Figure 2. An example of the upper-left cor-

ner of the fiscal code field to be located (red

square) and the anchor keywords to be de-

tected (green ellipse).

corner of the field was predicted in an area of 16 ∗ 11 pix-

els size. In 80.7% of the images in the test set, either one

of the two keywords or both keywords were found and the

location of the upper-left corner of the field could be pre-

dicted. In the case where no keyword was found, either the

field was rejected (we refer to this system as floating field

recognition with keyword location) or a full search of the

zone with the recognizer was done (we refer to this system

as floating field recognition with keyword and full search).

We did not directly evaluate the accuracy of the predicted

location of the field but rather evaluated the global system

(field location and field recognition).

3.3 Fixed field recognizer

The field recognizer was based on the Convolution

Neural Network character recognizer presented in section

2.2. The character recognizer has been trained on the full

database of character snippets extracted from the fiscal code

field. The classifier has been trained on 31 classes : from

the 36 initial classes (26 letters plus 10 digits), we merged

the following classes : 0/O, 1/I, 2/Z, 5/S and 8/B. Confu-

sion between these classes were expected to be solved by

the control key on the field. The error rate of the character

recognizer on the character test database was 5.4%.

Given a field location as presented in section 3.2, the

field zone was divided into 16 snippets of equal width. On

each snippet, the character recognizer computed the poste-

rior probability of each character class. The sequence of

16 characters which composes the fiscal code was modeled

by a weighted finite state transducer (WFST)[1] denoted R.

This WFST is defined by a 8-tuple (Σ, ∆, Q, I, F, E, λ, ρ)
:

• The input alphabet Σ was the 31 classes of the char-

acter recognizer; The output alphabet ∆ was equal to

Σ;

• The set of states Q was composed of K+1 states, where

K was the number of characters in the field, in our case

K = 16. The states were numbered from 0 to K;

• The set of initial state I was composed of only one

state, corresponding to the first character in the field;

The set of final state F was composed of only one

state, the supplementary state which does not corre-

spond to a character;

• The set of transitions E ⊂ Q×Σ×Σ×Q was {∀qi ∈
Q, ∀l ∈ Σ, (qi, l, l, qi+1)}. The weight associated to

each transition labeled by l was −log(P (l)), where

P (l) is the probability associated to the character l by

the character recognizer. The WFST was thus defined

on the tropical semi-ring (R+ ∪∞, min, +,∞, 0);

• The initial output function mapping I and the final out-

put function mapping F were null (defined by q → ǫ).

The regular expression defined in section 2.1, which

corresponds to the valid forms of fiscal code, was con-

verted into a WFST denoted C: each set of characters

(L, D, S, [0 − 7]) corresponded to a set of transitions be-

tween two states. For each transition, the input and output

labels were equal except for the merged classes (0/O, 1/I,

2/Z, 5/S and 8/B) for which 2 transitions were created, one

for each possible class in the merge. The cost associated to

each transition was identical and null.

The WFST resulting from the composition R ◦ C mod-

eled the recognized digit sequences that respect the syntac-

tic constraints of the fiscal code. We have extracted the

N best paths from the composed transducer (in our experi-

ments, N=100) and we have filtered the corresponding rec-

ognized codes with the control key function. The recogni-

tion result of the field recognizer was the filtered recognized

code with the lowest cost c. This cost was transformed into

a confidence score with exp(−c).

3.4 Field recognition results

We have tested our field recognizer on the A2iA-AV-

Field database in two experimental settings : first with the

annotated location of the field, referred to as fixed field

recognition and second with our field locator, referred to

as floating field recognition. The recognition results are re-

ported using read/substitution curves. Since the field recog-

nizer provided a confidence score associated to its predic-

tion, some of the recognition results can be rejected if the

confidence score is below a threshold s. For a given thresh-

old, the substitution and read rates are given by

Read(s) =
Na(s)

Nt

Substitution(s) =
Ni(s)

Na(s)

1034

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

R
ea

d
 r

at
e

Substitution rate

Fixed field recognition with key
Fixed field recognition without key

Floating field recognition with keyword
Floating field recognition with keyword + full search

Figure 3. Fixed and floating field recognition

results : read rate with respect to the substi-

tution rate for four experimental settings.

where Na(s) is the number of recognition results whose

score is above the threshold (accepted results), Ni(s) the

number of incorrect recognition results whose score is

above the threshold and Nt the total number of fields to be

recognized. By setting the threshold adequately, one can

obtain a low substitution rate, which is the key to a success-

ful real world application.

The Fixed field recognition results are shown on Figure

3. The first main result is the importance of the validation

key : without a validation key, the field recognition error

rate on all the documents is 31.4% whereas with the valida-

tion key, the error rate dropped at 14.6%. The second main

result is the reliability of the confidence score associated to

the recognition results : by reducing the read rate to 65%,

an error rate as low as 0.01% can be achieved.

The floating field recognition results are also shown on

Figure 3. As expected, the automatic location of the field

has an impact on the recognition results : at a substitu-

tion rate of 15% , the read rate is 100% for fixed field

recognition, and only 73% for Floating field recognition

with keyword. In the case where no keyword is found for

the location of the field, the recognizer is used for a full

search of the zone : the recognition results are presented on

Figure 3 as Floating field recognition with keyword + full

search. Even if this method was computationally intensive,

it yielded very good results : at low substitution rate (<1%),

the read rate is only 5% lower than with the annotation of

the location of the field. With this fully automatic system

(location and recognition), an error rate at 0.01% can be

achieved with a read rate at 60%, which is suitable for a

real world application.

4 Conclusion

In this paper, we have revisited two aspects of character

recognition. First we think that current databases of isolated

characters are too simple and have been used for too long

in the community to reflect the state-of-the-art of character

recognition for industrial applications. We have tested three

state-of-the art classifiers on MNIST and on a database ex-

tracted from a real-world application and we have shown

that the error rate increases dramatically from around 1%

on MNIST and up to 10% on our base. This shows that

the three classifiers are not equivalent with respect to their

resistance to noise. Second, we have described and evalu-

ated a system based on isolated character recognition and

designed for the recognition of floating character fields. We

have shown that several aspects, other than the recognition

rate on isolated characters, are important for an industrial

application : the localization of the field, its syntactical

structure, the presence of a control key and, overall, the

confidence score associated to the recognition result, which

permits to reject the unreliable results and thus to lower the

error rate to a level acceptable by the final client.

Acknowledgment: the authors wish to thank Christian

Gollan from the Computer Science Department of RWTH

Aachen University for his help with the W2D software.

References

[1] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri.

Openfst: a general and efficient weighted finite-state trans-

ducer library. In Proceedings of the Conference on Imple-

mentation and Application of Automata, pages 11–23, 2007.
[2] C. Burges. A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery, 2:121–

167, 1998.
[3] N. Gorski. Digital Document Processing, chapter Bank

Cheque Data Mining: Integrated Cheque Recognition Tech-

nologies, pages 437–458. 2007.
[4] E. Grosicki, M. Carré, J.-M. Brodin, and E. Geoffrois. Results

of the second rimes evaluation campaign for handwritten mail

processing. Proceedings of the International Conference on

Document Analysis and Recognition, 2009.

[5] J. Hull. A database for handwritten text recognition research.

IEEE Trans. on Pattern Analysis and Machine Intelligence,

16(5):550–554, 1994.

[6] D. Keysers, T. Deselaers, C. Gollan, and H. Ney. Deformation

models for image recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(8):1422–1435, 2007.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998.

[8] P. Simard, D. Steinkraus, and J. Platt. Best practice for con-

volutional neural networks applied to visual document analy-

sis. In International Conference on Document Analysis and

Recognition, pages 958–962, 2003.

1035

