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ABSTRACT

We present in this paper an HMM-based recognizer for the recognition of unconstrained Arabic handwritten
words. The recognizer is a context-dependent HMM which considers variable topology and contextual information
for a better modeling of writing units. We propose an algorithm to adapt the topology of each HMM to the
character to be modeled. For modeling the contextual units, a state-tying process based on decision tree clustering
is introduced which significantly reduces the number of parameters. Decision trees are built according to a set
of expert-based questions on how characters are written. Questions are divided into global questions yielding
larger clusters and precise questions yielding smaller ones. We apply this modeling to the recognition of Arabic
handwritten words. Experiments conducted on the OpenHaRT2010 database show that variable length topology
and contextual information significantly improves the recognition rate.
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1. INTRODUCTION

The recognition of Arabic writing has many applications such as mail sorting, bank checks reading and
the recognition of modern and historical handwritten documents. Arabic writing is very challenging for off-line
recognition systems.1 The handwriting is highly cursive which makes it difficult to deslant. It includes various
small-size marks which modify the meaning of letters (the diacritics). Last, when dealing with texts, dictionary
sizes may be very large due to the formation of Arabic words with prefixes and suffixes from word roots.

Different approaches have been proposed for recognizing isolated words and printed text lines.2, 3 For word
recognition, the analytical strategy is very popular : a word model is built from the concatenation of character
models. Moreover segmenting words into characters is avoided and characters models are built from word images
and their transcription. The analytical strategy is convenient for enlarging a vocabulary with new words since
new vocabulary words can be described through their compound letters, without providing their images.

HMMs are effective for modeling unconstrained words since they can cope with non-linear distortions. The
analytical strategy can be implemented in HMM systems through the so-called sliding window approach.4, 5 Such
systems can be easily applied for both Latin and Arabic and achieve state-of-the-art performance.6, 7

In the following, an HMM-based classifier is used for the recognition of handwritten Arabic words. This system
takes into account the context of a character within a writing unit. For a given character, we have considered
the influence of neighboring characters on its shape, as shown on Figure 1. We have used our knowledge of the
shapes of neighboring characters to assist the modeling of individual Arabic letters. Such knowledge has been
embedded in knowledge-based rules and decision trees used by our state clustering process and this results in
more accurate character models.

For this purpose, different character models can be built according to different contexts. This approach
is known as the context-dependent approach in the domain of speech recognition and has been applied to
printed character recognition. To our knowledge, only a few works deal with contextual modeling in handwriting
recognition.8–10

Contextual approaches lead to an excessive growth in the number of models, since one model is needed for
each pair of adjacent characters. It is thus desirable to reduce the number of models and model parameters while
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Figure 1. Illustration of the influence of context for handwriting. The three words 	á�J
�Ë@ �H@XA��J �̄B@ð ÕËAªË@ have been
written by the same writer. However, characters laB , aaE and saM yield different shapes.

preserving model refinement. Hence, model sharing and parameter tying are necessary to reduce the number of
parameters. Schussler and Niemann8 describe a context-dependent system using HMMs, where all sub-word units
(from monographs to the whole word) are modeled within a word hierarchy. Models with not enough training
samples are eliminated. The state-based tying proposed by Natarajan et al.3 uses a mixture of 128 Gaussians
associated to each state position of contextual models (trigraphs) corresponding to the same base character.
The total number of models can also be reduced by clustering all trigraphs according to contexts described
not as characters but as ascending or descending strokes.10 Fink et al.9 also proposed for Latin handwriting a
system based on contexts, these contexts being defined as broad categories. A data-driven clustering of the 1500
Gaussian densities of the mixture is performed at each state position and for each category. It is worthy to note
that clustering and tying the contextual models may offer, in addition to reducing the number of parameters,
the possibility to automatically capture common contextual effects.

The context-dependent system described below has some common characteristics with the context-based
systems described in Ref. 3 and Ref. 9. In both, trigraphs are modeled and parameters are shared at each state
position. Our system contrasts with these previous approaches as our state clustering is knowledge-driven :
we cluster models using decision trees where questions at each node are expert-based and specific to the way
handwritten characters are drawn. In addition, we include context from the neighboring windows by adding
dynamic features (derivative) in each feature vector. We have applied such approach to Latin handwriting.11 In
the present paper we apply it to Arabic handwriting and we present specific rules for this script.

The paper is organized as follows : Section 2 details our sliding window system, the method to train HMM
with variable topology and context-dependent models, Section 3 reports our experiments on the OpenHaRT2010
database and the conclusion and future extensions are given in Section 4.

2. VARIABLE TOPOLOGY AND CONTEXT DEPENDENT HMM MODELS

In this section, we describe our baseline model and our two contributions : variable HMM topology training
and context-dependent character form modeling.

2.1 Baseline HMM model

Our baseline model is based on a sliding window feature extraction and an HMM letter form modeling.
A sequence of feature vectors is extracted from right to left through overlapping windows applied on binary
deslanted word images. Within each window a set of 34 features is extracted :

– 26 features are inspired of the geometric features proposed by El-Hajj et al.4 : 13 features related to pixel
densities, 12 features related to pixel configurations (in order to capture stroke concavities), and a derivative
feature. Some of these 26 features are baseline dependent.
– 8 features are local gradient histogram features, derived from the work of Rodriguez and Perronnin.12 For

each window, the histogram of orientations is computed using all its pixels.
For our experiments, the following parameters are used : window width of 9 pixels, overlap between two sliding

windows equal to 3 pixels. The number of cells per window for the geometric features is 20. These parameters
happened to be the best for our images.

We introduce the context at the feature extraction level through derivative features. The derivation is compu-
ted with a regression. In the speech recognition domain, the first order regression is known as delta coefficients. K
is the chosen depth of the regression, giving the number of surrounding feature vectors (2 . K) used for computing
the dynamic features. The final feature vector is thus the concatenation of the original feature vector and its
first order regression vector.
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Figure 2. Training process uses state tying and Gaussian mixture incrementation.

A word is modeled by the concatenation of its compound character models. For the baseline model, all
character models share the same HMM Bakis topology : 12 emitting states, one self transition, and left-right
transitions allowed to the next two states. We consider HMMs with continuous observation densities so that the
observation probability density for each state is a mixture of NG Gaussian distributions.

2.2 Variable length monograph training

In Arabic, as in most of alphabetic languages, not all the letters have the same length. Therefore, the
adaptation of the HMM topology to the character length has been shown to be important for handwriting
recognition. Several methods have been proposed, either based on the length of the extracted feature vector13 or
on an iterative selective process based on the likelihood of the different topologies.14 We propose here a method
of the latter kind, but less computationally intensive.

First, all the letter HMM are initialized with the same topology (Bakis topology, 12 states per model, 1
Gaussian distribution) and several iteration of the Baum-Welch algorithm are used to estimate the parameters.
During the last iteration, the state occupation statistics are computed :

Γ(s) =

T∑

t=1

γs(ot). (1)

where γs(ot) is the posterior of the observation ot in state s. The number of states of the character C is then :

⌊Ls(C)⌋ =

∑
s∈SC

Γ(s)

|C|
(2)

where SC is the set of states of the HMM corresponding to the character C and |C| the frequency of the character
C in the training set. One can consider that

∑
s∈SC

Γ(s) computes the total number of times an observation
corresponds to any state of the character C (in terms of probability). Hence, dividing this number by |C| gives an
estimation of the number of states the HMM of C should have. When ⌊Ls(C)⌋ is computed for all the characters,
the occupation statistics are re-estimated with the new topologies. For each character HMM, the process is
iterated until the variation of its topology (in number of states) is below a predefined threshold. When no more
HMM topology is to be modified, the process stops.

2.3 Context-dependent trigraph models training

Once the HMM topologies have been chosen, each monograph is replicated to create its different context-
dependent variants. Since the number of parameters of the context-dependent models is very large, the models
must share parameters in order to be well estimated. Shared parameters are obtained with a state-based tying
algorithm described in the next section.

State tying determines which states can share the same Gaussian distributions. The state position-based
principle is that for a given central letter, all states corresponding to the same position in an HMM model are
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Figure 3. Illustration of state clustering for the trigraphs centered on character seB (�).

subject to agglomerative clustering. Our approach consists of building expert-based rules and decision trees to
perform this state clustering.

The merging or splitting of state clusters is driven by a binary tree whose nodes correspond to questions on
the characteristics of the models. Such decision trees have been designed for speech recognition at the phone
level by experts.15 To our knowledge, no work using such trees for handwriting recognition exists.

In our case, decision trees are based on a set of questions on the behavior of left and right contexts, and
are applied to states. Based on the same initial set of questions, one tree is built for every state position of
all trigraphs with the same central letter. Starting at the root node, all the states corresponding to the same
position and the same central letter are gathered in a single cluster. Then, the binary question which maximizes
the likelihood of the two children clusters it would create is chosen, and the split is made, creating two new nodes.
This splitting continues until the increase in likelihood falls below a threshold or no questions are available to
create nodes with a sufficient state occupancy count.

Let us consider a node containing the set of states S to be split in a given tree. The set S corresponds to the
set of training frames {of}f∈F . As all states in S are tied in the node, they all share the same mean µ(S) and
covariance matrix Σ(S). The likelihood of S generating the set of frames is hence given by :

L(S) =
∑

f∈F

∑

s∈S

log(Pr(of ;µ(S),Σ(S)))γs(of ) (3)

where γs(of ) is the a posteriori probability of frame of being generated by state s. Based on the work of Young16

and assuming that we work with Gaussian probability density functions, L(S) can be rewritten :

L(S) = −
1

2
(log[(2π)n|Σ(S)|] + n)Γ(S) (4)

Γ(S) is the accumulated state occupancy of the node, Γ(S) =
∑

f∈F

∑
s∈S

γs(of ), and n is the dimension of the
feature vectors.

We introduce then ∆Lq :

∆Lq = L(Sq+) + L(Sq−)− L(S) (5)

The split of the state set into two subsets Sq+ (answer to q is yes) and Sq− (answer to q is no) is made by question
q∗ which maximizes ∆Lq, provided that Γ(Sq+) and Γ(Sq−) are over the minimal state occupancy threshold,
and that ∆Lq is above the threshold of minimal increase in likelihood. This condition can be reformulated17 :

q∗ = argminq{
1

2
[Γ(Sq+)log(|Σ(Sq+)|) +

Γ(Sq−)log(|Σ(Sq−)|)− Γ(S)log(|Σ(S)|)]} (6)

The parameters ensuring efficient sizes of state clusters, namely the minimal state occupancy threshold and
the minimal increase in likelihood are tuned on the validation database. Trees reduced to their only root can be
observed. They correspond to monographs with few examples which aim to tie all their corresponding trigraphs
into a single model.
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Figure 4. Example of a decision tree for state clustering : questions and clusters are shown for the 2nd state of all *-seB+*

(�) trigraphs.

Decision trees have the ability of modeling unseen trigraphs with existing ones. This property is useful when
test and training dictionaries differ. Each state of a new trigraph is positioned at the root node of the tree
corresponding to the same state position and the same central letter. Then each state follows a designated path
along its belonging tree, defined by answering questions on the trigraph contexts, until it reaches a node where
a cluster is positioned. The state model representing the cluster is the model assigned to the considered state
number of the new trigraph.

After state-based tying, the number of Gaussian distributions associated to one state is incremented step by
step by splitting the Gaussians of the mixture with highest weight (see Ref. 11).

2.4 Knowledge-based Rules for Arabic trigraphs

As we already stated in previous work18,11 it is quite obvious that the way of writing a character within a
word is affected by adjacent letters, therefore the justification of using context-models to improve the accuracy
of modeling.

We use HTK syntax19 to designate trigraphs, and IFN-ENIT transliteration20 to make it writeable with

ASCII characters. For example, in Arabic word ÉJ

	̄
, the letter J
 is surrounded by letters

	̄
(previous-context)

and É (following-context).Using HTK notation, previous-context is defined by ’-’ and following context is
defined by ’+’, which gives the trigraph : faB-yaM+laE. The construction of our question sets is driven by the
two following hypothesis :

– letters with similar ending strokes will have a tendency to affect the following central letter in a similar
manner
– letters with similar beginning strokes will have a tendency to affect the previous central letter in a similar

manner
According to those hypothesis, Arabic letters which share the same shapes21 should be good candidates to

build question sets (QS). Those question sets are used in our clustering decision trees. Similar endings will lead
to groupings in previous-context question sets (P_QS), whereas similar beginnings will lead to groupings in
following-context question-sets (F_QS).

For example, the beginning (right part) of letters {
	® �® 	 �� } is very similar. They will be regrouped in the

same F_QS : { *+faM , *+kaM , *+faE , *+kaE }. Identically, { Q 	Q } are grouped in the set { *+raE , *+zaE



Figure 5. Histogram of the number of states per HMM model for the 150 models trained with variable length monograph
training algorithm.

} In { � � �� �� 	J J
 J. �J �J I. �I �I }, all letters do not share the same shapes, but again their beginning (right
part) looks similar. This should lead to the creation of the following F_QS : { *+seM, *+shM, *+seE, *+shE,
*+naM, *+baM, *+taM, *+thM, *+baE, *+taE, *+thE} The same is true for ending (left part) of letters, used
to build P_QS :

{ ª 	ª } → { ayM-* , ghM-* }

{ ñ ð Q P 	Q 	P } → { waE-* , waA-* , raE-* , raA-* , zaE-* , zaA-* }

See Ref.22 for the full list of question sets.

3. EXPERIMENTS

We have tested the different models on the OpenHaRT2010 database.23 This database is composed of a 40,000
handwritten documents in Arabic, annotated at word level (position and value). It corresponds to a very large
number of word images (about 4 million). This recognition task is much harder than the other tasks proposed
on Arabic, for example on the IFN-ENIT database. This difficulty is due to several factors : writing conditions
(presence of lines), variety of writers, very large vocabulary, etc.

We have trained our models on the predefined set called phase_1_train_set, containing 739,849 isolated word
images. We have trained HMM models for 117 Arabic letter forms, 10 digits and 23 punctuation symbols. We
used the set called Phase_1_dev_set as validation set (81,948 images). The vocabulary for decoding has been
selected on the training set and consisted of the 20,000 most frequent words. All the images have been rescaled
to 300 dpi.

We first study the result of our training procedure for variable topology HMM. Figure 5 shows the histogram
of the number of states for the 170 HMM models. If most of the models have a state number between 10 and
20, some of them have around 30 states and the maximum is reached with 42 states. The range of different state
numbers per HMM is larger than what we have observed for other languages such as French or English. This
could be due to a larger variability of Arabic handwriting.

We report now the recognition results of the different models, the baseline HMM, the variable topology HMM
and the context-dependent HMM with variable topology. Table 1 shows the isolated word recognition results on
the OpenHart2010 Phase_1_dev_set. We report the recognition rates on the complete set Phase_1_dev_set
(with out-of-vocabulary (OOV) words) and also only on the words of the set which are present in the vocabulary
(without OOV ). The latter results show the impact of the vocabulary coverage on the recognition rate. A study
of the impact of vocabulary size on the recognition rate is interesting but out of the scope of this paper.



Table 1. Isolated word recognition results on the OpenHart2010 Phase_1_dev_set for the baseline model (fixed size)
and the two proposed improvements : variable size models and context-dependent models. Rates are given with or without
out-of-vocabulary (OOV) words.

Model Recognition rate Recognition rate

without OOV with OOV

Fixed size model, context independent 47.7% 39.3 %
Variable size, context independent 52.3% 43.0 %
Variable size, context dependent 56.1% 46.2%

Table 2. Whole page recognition results on the OpenHart2010 Evaluation set for the proposed model and for two other
systems : a context-independent HMM and a context-dependent HMM, both with fixed topology. In all cases, language
models were used. Rates are directly comparable with the results of the OpenHaRT2010 evaluation.

Model Recognition rate

Fixed size HMM, context independent 45.0%
Fixed size HMM, context dependent 54.0%
Variable size HMM, context dependent 58.0%

Table 1 demonstrates that the two modeling methods proposed in this paper significantly improve the recog-
nition results. First, the method to adjust the topology of the HMM yields a 10% increase in recognition rate,
from 39.3% to 43.0%. Second, the context-dependent modeling yields a supplementary increase of 7.5%, from
43.0% to 46.2%. The same improvements are observed when the evaluation is done only on the words in the
vocabulary (no OOV).

Finally, we compare the proposed system to other recognition systems submitted to the OpenHaRT2010
evaluation.23 For this evaluation, we have used a language model. For each line of text (given by the annotation),
a lattice of recognition results was built using, for each word position, the 50 most likely recognition results given
by the recognizer. The language model was used to rescore the lattice and the best path was computed in the
rescored lattice. The sequence of words along the best path gave for each word position the final recognition
result of the systems. The language model was a 3-gram using modified Kneyser-Ney smoothing, trained on 370
million words of the Arabic Gigaword v2 corpus24 using the SRILM toolkit25 after a simple tokenization. The
recognition rates on the OpenHaRT2010 evaluation set are given on Table 2 for the proposed model and for two of
our previous models submitted to the evaluation in 2010, a context-independent HMM and a context-dependent
HMM, both with fixed topology. The proposed model outperforms our previous models and yields a 7% increase
in recognition rate compared to our best previous model. For this evaluation, the best result was obtained by
our model based on a combination of three recognizers, with 62.3% of recognition rate.

4. CONCLUSION

We have described a system for Arabic isolated word recognition based on HMM with variable topology and
context-dependent letter form modeling. The topology of each HMM is automatically adapted to each letter
form to be modeled. For the context-dependent models, parameter sharing is obtained thanks to a state tying
algorithm using decision trees defined with morphological questions. The improvements obtained with these
two techniques are measured on the OpenHaRT2010 database. The two proposed techniques yield a significant
improvement over our baseline model.

However, there are numerous ways to improve our system. First, we need to develop a better modeling of the
Arabic characters, for example when a vertical ligature is used. This can be done by defining writing variants,
the same way it is done in speech recognition for pronunciation variants. Second, we need to increase the size of
the vocabulary in order to reduce the out-of-vocabulary rate. Expanding the vocabulary will also increase the
error rate, but this effect can be counterbalanced by the use of language models. Finally, this system can be
combined with other recognition systems, as shown successfully for the OpenHaRT 2010 competition.
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