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a b s t r a c t 

Deep neural networks are becoming increasingly powerful and large and always require more labelled 

data to be trained. However, since annotating data is time-consuming, it is now necessary to develop 

systems that show good performance while learning on a limited amount of data. These data must be 

correctly chosen to obtain models that are still efficient. For this, the systems must be able to determine 

which data should be annotated to achieve the best results. In this paper, we propose four estimators to 

estimate the confidence of object detection predictions. The first two are based on Monte Carlo dropout, 

the third one on descriptive statistics and the last one on the detector posterior probabilities. In the 

active learning framework, the three first estimators show a significant improvement in performance for 

the detection of document physical pages and text lines compared to a random selection of images. We 

also show that the proposed estimator based on descriptive statistics can replace MC dropout, reducing 

the computational cost without compromising the performances. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Despite the remarkable performance of deep neural networks 

n many application domains, their successful introduction in real- 

orld production systems requires that they not only perform well 

ut also have some capacities to assess the certainty or uncertainty 

f their decisions. This is particularly important for medical im- 

ge or autonomous driving related applications. But the problem 

lso arises in the case of domain adaptation of deep neural net- 

orks, where one expects to provide the system with as few new 

abelled examples as possible to adapt the system to the new do- 

ain. Choosing the relevant examples for human labelling is cru- 

ial to allow a successful adaptation. This framework known as 

ctive learning requires that a first system can perform the task 

hile automatically assessing its confidence on new unseen data, 

o that the less confident decisions can be submitted to a human 

perator for manual labelling, whereas the more confident deci- 

ions made by the system would be kept as is to provide an au- 

omatic labelling. In this paper, we aim at developing confidence 

easures for document object detection model adaptation within 

n active learning framework, so as to reduce the human annota- 

ion effort to a minimum. 

Object detection neural networks output probabilities that 

ould be directly used as confidence estimates. However, it has 
∗ Corresponding author. 
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een shown that these probabilities are often overconfident esti- 

ators that give high confidence even on erroneous predictions 

1] . To address this problem, several studies have been conducted 

o design better estimators. 

Within the active learning framework, one of the first proposed 

pproaches to select the samples to be manually annotated was 

ased on linear Support Vector Machines (SVM) [2] . Another pop- 

lar approach is uncertainty sampling [3] where the samples lead- 

ng to predictions with high uncertainty are selected. To quantify 

he uncertainty, several measures based on posterior probabilities 

ave been proposed such as entropy or least confidence score [4] . 

To model the uncertainty of neural networks decisions, some 

ther approaches have been proposed such as the Monte Carlo 

MC) dropout [5] . Instead of computing a single prediction at test 

ime, the network is asked to provide multiple predictions with 

ropout, the distribution of which is then analyzed to derive a 

onfidence estimate of the non dropout prediction. This technique, 

hich approaches Bayesian deep learning models, has been used 

or many tasks. It has often proved to be efficient for classification 

o choose the data to be labelled [6] . In [7] , MC dropout is used to

stimate the uncertainty in semantic image segmentation. In addi- 

ion, MC dropout has been used as a class probabilities regulariza- 

ion technique to get an improved ordinal ranking of the predic- 

ions [8] . 

Some other works make use of deep confidence estimation 

odels independent of the detection model. In [9] , an adversar- 

al network is trained at the same time as the baseline detection 

https://doi.org/10.1016/j.patrec.2022.12.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.12.024&domain=pdf
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1 https://gitlab.com/teklia/dla/document _ image _ segmentation _ scoring . 
odel. The adversarial network is trained to estimate how close 

he predictions are to the ground-truth. It is worth noting that 

ost of the aforementioned works focus on classification tasks. 

espite the large number of works focusing on the implementa- 

ion of new object detection systems, there is little to no literature 

ocusing on the confidence estimation for this task. 

The aim of this work is to build a confidence estimator for ob- 

ect detection in document images within an active learning sce- 

ario. For this purpose, we investigate four confidence estimators. 

he first one consists in using the class posterior probabilities of 

he detection model to estimate the confidence. In the second 

pproach, we propose two confidence estimators inspired by the 

onte Carlo dropout that consists in building confidence estimates 

sing dropout at test time. The main advantage of this approach 

s that no additional training is required as long as the model 

as been trained with dropout layers. It can be applied to already 

rained models without any modification. This approach, however, 

s computationally expensive, and therefore our last proposal con- 

ists in building a dedicated system that can predict a confidence 

stimate with only one forward step during inference. Being inde- 

endent of the predictor, this system requires a specific training 

hase. 

Our contributions are as follows: 

• We propose two new confidence estimators based on Monte 

Carlo dropout for object detection tasks. 
• We propose a new confidence estimator, specifically designed 

for object detection, which is based on object descriptive statis- 

tics that estimates the mean Average Precision (mAP) of the 

predictions. 
• We present an estimator based on class posterior probabilities. 
• On two document analysis tasks (page detection and text line 

detection), we compare the estimators through extensive exper- 

iments and notably in an active learning setting where a good 

confidence estimate is crucial. We show that with half as much 

data, they allow achieving much better results than those ob- 

tained with a random selection of the adaptation samples. 

This paper is organized as follows: Section 2 presents the pro- 

osed confidence estimators. Section 3 presents the setup used for 

he experiments: data, training details of the detection models and 

hose of the confidence estimators. Finally, in Section 4 we present 

nd discuss the results obtained. 

. Proposed confidence estimators 

In the following, we present the four confidence estimators 

e propose: the first one is a class posterior probabilities-based 

stimator; the following two are based on Monte Carlo dropout 

5] and the last one on descriptive statistics. 

.1. Estimator based on posterior probabilities 

Since object detection neural networks output probabilities, a 

traightforward confidence estimate is the Posterior probabilities- 

ased Confidence Estimator (denoted in the following as PCE). For 

ach predicted object, the pixel probabilities output by the detec- 

ion model are first averaged. Then the PCE score is computed and 

orresponds to the average of all the objects’ probabilities. 

.2. Estimators based on Monte Carlo dropout 

Estimating the confidence of a prediction with MC dropout con- 

ists in computing N forward steps on the same observation and 

nalyzing the distribution of the predictions. The variance between 

he N predictions is an indicator of the network uncertainty and 

an thus be considered as a confidence estimate. In this paper, we 
32
ropose two scores summarizing the variance of the predictions: 

he Dropout Average Precision (DAP) and the Dropout Object Vari- 

nce (DOV). 

The mean Average Precision (mAP) 1 used in the PASCAL VOC 

hallenges [10] allows evaluating a prediction at object level com- 

ared to a ground-truth detection result. The advantage of this 

etric is that it considers the size and the position of the pre- 

icted objects, since it relies on an Intersection-over-Union object 

atching. Inspired by this metric, we derive the Dropout Average 

recision (DAP) estimator which is computed by considering ev- 

ry prediction pair (( p i , p j ) where p i and p j are two distinct pre-

ictions of the same image with i, j ∈ N and i � = j) and computing

he mAP for each pair, one prediction being considered as ground- 

ruth arbitrarily. The DAP is the average of all the mAP scores (see 

q. (1) ) where a high DAP indicates that the N predictions are very 

imilar and is likely an indicator of correct detection. 

AP = 

1 

N 

2 − N 

×
N ∑ 

i =1 , j=1 ,i � = j 
mAP (p i , p j ) (1) 

The second estimator we propose is based only on the variance 

f the number of predicted objects among the dropout predictions, 

hus the name Dropout Object Variance (DOV) of this estimator. 

ndeed, when the model is not very confident, a highly variable 

umber of objects is predicted with many small objects around 

he main one (as shown on the right image of Fig. 3 ). To get a

ingle value, we take the variance of the number of objects in the 

ropout predictions as shown in Eq. (2) where n i is the number 

f objects in the prediction p i . A DOV of 0 indicates that all the

redictions have the same number of objects, and is likely an indi- 

ator of correct detection. 

OV = 

1 

N 

×
N ∑ 

i =1 

(n i − n ) 2 with n = 

1 

N 

×
N ∑ 

i =1 

n i (2) 

These two scores are able to estimate the confidence of a pre- 

iction with a variable number of objects. Indeed, the number of 

bjects to detect depends on the task and can be highly variable: 

ne or two for page detection and several tens for text line detec- 

ion. 

.3. Estimator based on object statistics 

In this section, we adopt a more standard approach for confi- 

ence estimation based on regression. We design a specific sys- 

em that analyzes a detection result and estimates the mAP, as no 

round-truth is available at test time. Unlike our first proposal, the 

ystem being independent of the detector, this approach can oper- 

te with any type of detector. 

.3.1. Object descriptive statistics 

At the output of the detection model, we have class posterior 

robabilities for each pixel to belong to the object or background 

lass. First, pixels are assigned to the class with the highest prob- 

bility and then the connected components are detected, which 

eads to several predicted objects for a given image. Then we ex- 

ract the bounding polygons of the connected components as well 

s their bounding rectangles. From this information, we compute 

he following eight object features: 

• Height and width ratios between each predicted object’s 

bounding rectangle and the image height and width. 
• Ratio between the height and width of the bounding rectangle 

of each predicted object. 

https://gitlab.com/teklia/dla/document_image_segmentation_scoring
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• For each predicted object, ratios between the area of its bound- 

ing polygon and the area of the image, the area of its bounding 

polygon and the area of its bounding rectangle, the area of its 

bounding rectangle and the area of the image. 
• Distances between the centroids of all bounding rectangles in 

height (normalized by the image height) and in width (normal- 

ized by image width). The distances are computed by consider- 

ing each pair of bounding rectangles. 

These features allow describing the sizes, shapes, and positions 

f the detected objects in document images. For a given image, 

ach feature is computed for each detected object, whose result- 

ng values are grouped into B bins to provide a histogram for each 

eature. The histograms are then concatenated to form a single ob- 

ect statistic feature vector of size 8 ×B . These statistics are then 

sed to train a regressor. 

.3.2. mAP-RFR 

To build the confidence estimator, we chose to estimate the 

AP of the predictions because it has been shown to be more 

eaningful than the IoU [11] . To estimate the mAP of a prediction, 

everal regression methods can be used, such as Support Vector 

egression (SVR) or Random Forest Regressor (RFR). In our exper- 

ments, we used RFR as it showed the best results in our prelim- 

nary works. After applying the regressor, no further processing is 

eeded, since it directly outputs a single score that is considered as 

he confidence estimate. In the following, this estimator is referred 

o as mAP-RFR. 

. Experimental setup 

The estimators are tested and compared on two tasks: physi- 

al document page detection and handwritten text line detection. 

hysical page detection is a rather simple task, since only one or 

wo objects must be detected. Handwritten text line detection is a 

ore complex task since document pages may contain a variable 

nd possibly large number of text lines, very different in shape and 

ositions. 

.1. Experimental data 

For the experiments on page detection, we used the cBAD 

12] and Horae [13] datasets. Our goal is to adapt the detection 

odel pre-trained on cBAD to the Horae document images by 

nnotating as little data as possible. For the text line detection 

ask, our goal is to adapt a pre-trained and generic line detec- 

ion model to a new unseen set of documents, namely the Hugin- 

unin dataset [14] . 

The cBAD dataset [12] contains 2035 images of handwritten doc- 

ments that have been used during the cBAD competitions. The 

ataset has been annotated at single and double page levels 2 [15] . 

or the following experiments, we predict at the single page level, 

eading to two objects for the images showing a double page 

ocument. In addition, the abnormal images have been removed 

ince their annotations were not accurate enough. In the follow- 

ng, this version of the dataset is denoted as cBAD 

∗ and consists of 

630 training, 200 validation and 199 test images with respectively 

,801, 221 and 219 single pages. 

The Horae dataset [13] consists of 572 annotated images from 

00 medieval books of hours. The full Horae corpus is composed of 

158 books of hours presenting a high diversity of non-annotated 

ocument images in digitization types, backgrounds, and shapes. 

his corpus is used to compare the different estimators when used 

n a real active learning framework. In addition, since the original 
2 https://github.com/ctensmeyer/pagenet . 

33 
est set contains only 30 images, to obtain more robust results in 

he following experiments, we extended this test set by annotat- 

ng 300 additional images randomly selected from the 1158 books, 

epresenting 364 single pages. This test set is denoted Horae-test- 

00. 

The Hugin-Munin dataset [14] consists of annotated pages from 

rivate correspondences and diaries of 12 Norwegian artists writ- 

en between 1820 and 1950. The documents have been annotated 

t line level with their corresponding transcriptions. This dataset 

ontains 691 training, 85 validation and 73 test images. 

.2. Object detection training 

For our experiments, we used the Doc-UFCN 

3 [16] system as 

bject detector because it showed good performance for object de- 

ection on historical documents while having a reduced inference 

ime compared to other systems. This system predicts pixel-level 

robabilities, and the pixels are assigned to the class with the 

ighest probability. They are then grouped into connected com- 

onents to form objects and those with an area smaller than a 

hreshold t = 50 pixels are removed. Several values for this thresh- 

ld have been tested in previous works [11] , this one giving the 

est performance. 

For both tasks, the pre-trained models (denoted as baseline in 

he following) are trained with the images resized such that their 

argest side is 768px, keeping their aspect ratio. A pre-processing is 

pplied to the training labels to prevent the annotated areas from 

ouching when resizing the images [11] . The models are trained for 

50 epochs with a learning rate of 5e-3 and the Adam optimizer. 

he weights that led to the lowest validation loss during training 

re kept as the best. 

For the page detection task, the baseline model is trained on 

BAD 

∗ images. It shows an IoU of 97% and a mAP of 94% on cBAD 

∗.

owever, there is still room for improvement on the Horae-test- 

00 images, since the mAP is about 60%. In the following, the im- 

ges with the lowest estimated confidence scores in the Horae cor- 

us are annotated to improve the detection evaluation on Horae- 

est-300. 

For text line detection, we trained a generic text line segmenta- 

ion model and then the confidence estimators on many datasets. 

n this regard, we have collected 19 mostly public databases in- 

luding historical and modern documents [11] . Altogether this 

ataset contains 9432 training, 1907 validation and 6 6 69 test im- 

ges which corresponds to 374,316 training, 85,208 validation and 

90,502 test annotated lines. This generic model applied to the 

ugin-Munin test set was evaluated at 48% IoU and 21% mAP. This 

uite low result was expected since the documents are way more 

omplex than those used during pre-training. 

In addition to the standard segmentation metrics, text line 

odels are evaluated using goal-directed metrics, namely the 

age-level CER and WER [11] . For that purpose, a Handwritten 

ext Recognizer (HTR) based on Kaldi [17] was trained on the 

ugin-Munin transcribed lines. We chose this HTR because it is 

n out-of-the-box package that generally performs reasonably well 

n most use cases and has shown competitive performances on 

ugin-Munin documents [14] . 

The trained HTR model is applied to all the lines predicted by 

oc-UFCN which are ordered by their centroid from the top-left 

orner of the page to the bottom-right corner. The predicted texts 

re concatenated in this same order to provide a single page-level 

ranscription. Manual transcriptions are ordered using the same 

ethod and page level CER and WER are computed. The base- 

ine detection model gives about 24% CER on Hugin-Munin. In ad- 
3 https://pypi.org/project/doc-ufcn/ . 

https://github.com/ctensmeyer/pagenet
https://pypi.org/project/doc-ufcn/
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Fig. 1. Reject curves showing the evolution of the baseline model performance on Horae-test-300 using DAP (left) and DOV (right) estimators regarding the number of 

dropout predictions N . 
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ition, we compute the WordCountFMeasure (WCFM) [18] which 

valuates HTR models based on the number of correctly retrieved 

ords, regardless of their position. We used the PRImA Text Evalu- 

tion Toolkit 4 to compute the WCFM scores. Kaldi gives a WCFM of 

9% compared to the manual transcriptions. These CER and WCFM 

alues indicate that the lines detected by the baseline model are 

ot the best input for the HTR model. They may reflect misplaced 

etected lines (no text), too thin lines (cut text) or missed lines. 

.3. Confidence estimators training 

No additional training is required for the estimators based on 

C dropout, since only the object detection models presented 

n Section 3.2 are used to estimate the confidence. In contrast, 

he regressors have to be trained. Those are trained on the same 

ata as the detection models, whose statistics are presented in 

ections 3.1 and 3.2 . Thus, a first regressor is trained on the cBAD 

∗

ata for page detection and a second is trained on the same 19 

atabases as the generic line detection model. 

First the object detection model is applied to all the images 

cBAD 

∗ for the page detection and the 19 datasets for the line de- 

ection) which allows calculating the statistics. Since the datasets 

re annotated, the detection model is then evaluated on each im- 

ge separately, providing an IoU and mAP for each image. These 

AP values are used as the target for training the regressors. 

To train the regression models, we used the RandomForestRe- 

ressor of the scikit-learn toolkit using the default parameters. The 

egression models show low Mean Square Errors (MSE) on the 

raining datasets (0.0164 MSE on the test set of cBAD 

∗). 

. Experimental results and discussion 

In this section, we evaluate and compare the confidence estima- 

ors using reject curves and then compare their performance when 

ntegrated within an active learning framework. 

.1. Number of dropout predictions 

Before further experimentation, we need to define the num- 

er of predictions N to compute for the estimators based on MC 

ropout (DAP and DOV). Fig. 1 shows the mAP as a function of the

ejection rate for DAP and DOV estimators computed for various N 

alues (2, 5, 10, 25 and 50). We chose these values of N since we
4 https://www.primaresearch.org/tools/PerformanceEvaluation . 

h

m

s

34 
ook for an order of magnitude of N rather than a precise value. 

he idea is to know if we need a very large number of predic- 

ions to obtain a significant variance between the predictions, or 

f only a few predictions are sufficient. In addition, we did not go 

eyond 50 predictions because we want to keep a reasonable time 

nd computational cost. 

The results are given on Horae-test-300 for the page detection. 

he reject curves are constructed by first sorting the images ac- 

ording to their estimated confidence, the samples having a lower 

AP value (or higher DOV value) than a pre-defined threshold are 

emoved from the evaluation set and the mAP is computed over 

he remaining samples. For DAP, the threshold varies from 0 to 1 

ith a step of 0.05. For DOV, the values are not bounded, so the 

hreshold varies from 10 down to 0 with a step of -1. 

These plots show that using N = 10 predictions for the dropout 

stimation is enough, and that no improvement is observed with 

 = 25 or 50. Moreover, the computation cost is reduced with only 

0 predictions. Based on this observation, we used N = 10 predic- 

ions with dropout to estimate the confidence scores in the rest of 

he experiments. 

.2. Confidence estimators performance in rejection 

This first experiment shows how the performance of the page 

etection model evolves when images with the lowest estimated 

onfidence scores are removed from the test set. On reject curves, 

ach point corresponds to a threshold, for which images with an 

stimated score below this threshold are removed from the evalu- 

tion. The curves do not reach 100% because above a given thresh- 

ld, only images with the same score remain so that they cannot 

e further removed without making the evaluation set empty. For 

he sake of clarity, we only show the evolution of mAP, the results 

f IoU following the same trend. 

Fig. 2 shows the evolution of the baseline model performance 

n Horae-test-300 for the page detection task regarding the re- 

ection rate for different confidence estimators. We show the me- 

ian curves as well as the confidence intervals (10th and 90th per- 

entiles) obtained by computing 100 reject curves generated by 

00 resamples with replacement from the original test set. The 

andom curve shows the results obtained for 100 random sam- 

lings. 

The goal is to have a model with a high mAP and a low re-

ection rate. We can see that the dropout-based estimators do not 

old up compared to the statistics-based regressor. Moreover, since 

AP-RFR requires only one forward step in inference, this first re- 

ult shows that using mAP-RFR instead of MC dropout is all the 

https://www.primaresearch.org/tools/PerformanceEvaluation
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Fig. 2. Reject curves showing the mAP score of the baseline page detection model 

on Horae-test-300 regarding the rejection rate. 
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Fig. 4. Evolution of the page detection evaluation (mAP) on Horae-test-300 during 

active learning iterations. 

Table 1 

Results of the page detection models on 

Horae-test-300 after active learning. 

Estimator IoU mAP #images 

Baseline 90.30 60.16 0 

Random 93.73 86.20 300 

PCE 93.45 86.37 90 

mAP-RFR 93.58 87.39 120 

DAP 94.04 91.43 129 

DOV 94.62 92.27 168 

IoU and mAP are given in %. 
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ore interesting. The results of PCE being similar to DAP and DOV, 

t appears that the MC dropout estimators do not make better in- 

icators than the detector posterior probabilities. This may be ex- 

lained by the fact that no additional information than the trained 

eural network is provided to these three estimators. This first ex- 

eriment shows that our proposed mAP-RFR has a high ability to 

stimate the confidence of the predicted pages. It outperforms DAP 

nd DOV which are themselves only slightly better than PCE. 

On Fig. 3 , we show two predictions obtained by the baseline 

odel for the page detection task. On the left we show a good 

rediction where the variance is very low except at the edges of 

he objects. The confidence estimates DOV = 0.0, DAP = 1.0 and mAP- 

FR = 1.0 reflect clearly the good quality of the detection of the left 

mage while the confidence estimates of DOV = 17.36, DAP = 0.0993 

nd mAP-RFR = 0.5553 of the right image also reflect the bad qual- 

ty of the detection that contains a high variable number of small 

redicted objects around the main one. 

.3. Active learning 

Our main goal is to have a good object detector while requiring 

 reasonable amount of annotated samples. To achieve this, it is 

ecessary to correctly choose which data to annotate. 

In the experiments, we follow a standard active learning setup 

19] . First, a baseline Doc-UFCN model is trained and is then ap- 

lied to unseen and non-annotated documents from a new dataset. 

ext, these images are ranked based on their estimated confi- 

ences, those with the lowest confidences are selected for man- 

al annotation and used to train another model. Although many 

trategies for selecting the data to be annotated have been pro- 

osed to best improve the models [3] , we focus on selecting the 

mages with the lowest confidence, other selection strategies are 

eft for future works. 

Each detection model is trained in the same configuration as 

he baseline models described in Section 3.2 . During the active 

earning iterations, the models are fine-tuned and the weights are 

nitialized with those of the last trained models. For the following 

xperiments, we computed a confidence interval on the last mod- 
ig. 3. Two images from Horae (left) with their predictions (center) and the variance 

n yellow, whereas areas with no variance are in black. The left image has confidence 

AP = 0.0993 and mAP-RFR = 0.5553. 

35 
ls. For this, we used empirical bootstrapping [20] with 100 resam- 

les with replacement. In addition, experiments with the random 

election are repeated 5 times and the mean values and standard 

eviations are presented. 

.3.1. Page detection 

Fig. 4 and Table 1 show the results obtained for the page de- 

ection task. At each iteration, the last trained model is applied to 

he Horae corpus images and those with an estimated confidence 

core below a threshold are manually annotated and added to the 

raining set. As with the rejection curves, these plots show that 

he estimators are able to detect bad predictions in order to train 

etter performing models with only a small amount of annotated 

ata. Indeed, they show that the estimators are better than a ran- 

om selection since with twice less data, the models show relative 

ncreases of 6% mAP (+5.23 percentage points) for DAP, 7% (+6.07 

oints) for DOV and almost 1.5% (+1.19 points) for mAP-RFR. From 

ig. 4 , we also observe that the curve corresponding to mAP-RFR is 

lmost always above those of the other estimators, indicating bet- 

er performing models with less annotated data. 

These results confirm that mAP-RFR estimator outperforms MC 

ropout-based estimators since it shows higher mAP while requir- 

ng only one forward step during inference. One explanation for 

hese results is that the DAP and DOV estimators are unsupervised: 

hey have no prior knowledge about what a correct prediction is. 
between N = 10 predictions with dropout (right). A high variance is represented 

estimates of DOV = 0.0, DAP = 1.0 and mAP-RFR = 1.0 and the right one DOV = 17.36, 
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Fig. 5. Evolution of the text line detection evaluation (mAP) on Hugin-Munin dur- 

ing active learning iterations. 

Table 2 

Results of the line detection models on Hugin-Munin after active 

learning. 

Estimator IoU mAP CER WCFM #images 

Baseline 48.21 21.30 24.37 59.35 0 

Random 61.96 39.95 22.20 63.26 300 

PCE 64.92 43.06 24.66 66.08 109 

mAP-RFR 64.36 44.39 22.50 65.73 139 

DAP 62.30 36.22 20.35 68.37 126 

IoU, mAP and WCFM are given in %. 
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n the contrary, mAP-RFR is trained with the real mAPs which are 

omputed on the annotated data. 

.3.2. Text line detection 

Fig. 5 and Table 2 show the results obtained when using mAP- 

FR, DAP and PCE estimators for active learning. We do not show 

he results of DOV, since it shows very similar results to DAP. In 

ddition, the WER is not shown here since it is strongly correlated 

o the CER. 

According to Fig. 5 , it appears that the random selection gives 

ood results with only 50 images. However, these results strongly 

epend on the chosen data, which lead to highly variable perfor- 

ance from one selection to another. Therefore, in view of this 

arge variability of the results, we believe that it is preferable to 

ocus on a more robust and less random estimator that can obtain 

qually satisfactory results. 

From Table 2 , mAP-RFR shows much better results than random 

ata selection, with a relative increase of 11% mAP (+4.4 percent- 

ge points) and a similar CER value with only half annotated im- 

ges. It also shows a better IoU and mAP than the other estimators 

ith a similar amount of annotated data. 

In addition, despite much worse results in IoU and mAP, DAP 

hows better CER and WCFM values compared to mAP-RFR. In- 

eed, we show in [11] that the relationship between these met- 

ics is not linear. In addition, mAP-RFR was made to estimate the 

AP of each prediction and thus maximize the mAP of the mod- 

ls. However, it has been shown that maximizing the mAP does 

ot necessarily mean improving the input for the HTR [11] . In fact, 

he Hugin-Munin dataset is annotated using quite complex poly- 

ons (including all ascenders and descenders). Therefore, improv- 

ng the mAP consists in better predicting these ascenders and de- 

cenders which does not necessarily lead to the best input for 

he HTR. That is why mAP-RFR, which better predicts ascenders 

nd descenders, shows worst text recognition results compared to 

AP. 

For this task, it would be worth selecting the images based on 

 confidence score related to text recognition. The detection model 

ould directly adapt to improve the text recognition. 
36 
. Conclusion 

In this paper, we compared four approaches to estimate the 

onfidence of object detection models. We have shown that these 

stimators can be used to train models reaching high performance 

or object detection in terms of IoU and mAP while requiring only 

 small manual annotation effort. When the optimized metrics are 

losely related to the final goal, such as for physical page detection, 

e have shown that mAP-RFR estimator leads to better detection 

erformance than those based on MC dropout while having a re- 

uced computational cost. However, it is supervised and needs to 

e trained, which is not the case for DAP, DOV and PCE. In the case

f an adaptation to new data, it is therefore advantageous, as a first 

tep, to use the dropout-based estimator DAP. If the results do not 

each the expected performance, then it seems more valuable to 

se a trained estimator such as mAP-RFR. On the other hand, when 

he metrics are more loosely related to the final goal, such as for 

ext line detection, dropout-based methods are more competitive. 

In the future, we plan to estimate confidence at the object level 

irectly in such a way that we no longer reject pages but objects. 

his would allow knowing exactly which objects are problematic 

nd correcting them. In addition, we want to automatically cre- 

te object description vectors through learned embeddings. Finally, 

e have shown that using goal-directed metrics allows evaluating 

he impact of the detection models on the final task. Therefore, we 

lan to set up an estimator that reflects the text recognition re- 

ults. 
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