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Abstract—This study aims at building an efficient word recognition system resulting from the combination of three handwriting

recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual

information for a better modeling of writing units. For modeling the contextual units, a state-tying process based on decision tree

clustering is introduced. Decision trees are built according to a set of expert-based questions on how characters are written. Questions

are divided into global questions, yielding larger clusters, and precise questions, yielding smaller ones. Such clustering enables us to

reduce the total number of models and Gaussians densities by 10. We then apply this modeling to the recognition of handwritten

words. Experiments are conducted on three publicly available databases based on Latin or Arabic languages: Rimes, IAM, and

OpenHart. The results obtained show that contextual information embedded with dynamic modeling significantly improves recognition.

Index Terms—Latin and Arabic handwriting recognition, context-dependent HMMs, neural-network combination.
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1 INTRODUCTION

THERE is a growing interest for handwriting recognition
since handwriting is a widespread means of commu-

nication and can be found in both historical and modern
documents. Among popular applications of handwriting
recognition are bank check processing, mailed envelopes
reading, and handwritten text recognition in documents
and videos, for which different systems have been success-
fully developed [1], [2], [3], [4], [5]. The scope of recognition
can be extended to reading letters sent to companies or
public offices since there is a demand to sort, search, and
automatically answer mails based on document content.
Detecting a restricted set of handwritten keywords, such as
in [6], is useful for sorting handwritten mails. However, a
full transcription of the majority of words present in mail
would be much more powerful. This transcription, pro-
vided in textual format such as ASCII, enables textual
queries adapted to any user need. However, for reading
most words of a handwritten letter, recognition systems

must cope with the inherent handwriting variability and
deal with a large number of word and character models.
Stochastic modeling such as Hidden Markov Models
(HMMs) has proven to be effective for modeling hand-
writing. In addition, word recognition with HMMs can be
easily extended to line and paragraph recognition by
introducing language models [7].

HMMs are effective for modeling unconstrained words
since they can cope with nonlinear distortions. HMM
systems can be divided into two types, depending on their
strategy: holistic or analytical. The holistic strategy, re-
stricted to small lexica, considers word images as a whole
and does not attempt to segment words into characters or
smaller units. In contrast, the analytical strategy consists of
modeling words by the concatenation of compound char-
acter HMMs. The character-based representation of words
which qualifies the analytical strategy is convenient for
enlarging the vocabulary: Word models are built from the
concatenation of trained character models. The advantage is
that words which were not present in training data can still
be modeled without requiring word images as soon as the
characters composing these words are trained.

Representing words by characters may or may not require
the segmentation of the words into characters, previous to
recognition. There are analytical HMM systems which
presegment words into characters or subunits based on
maxima or minima points of the contours or maximum
curvature points [8]. In contrast, the so-called Sliding
Window Systems perform implicit segmentation jointly with
recognition [6], [9], [10], [11]. Such systems can be easily
applied and achieve state-of-the-art performance. A compre-
hensive survey on HMM systems for handwriting recogni-
tion along with their performance can be found in [12].

In the following, HMM-based classifiers are used for the
recognition of handwritten words. Words are given isolated
(see Fig. 1) thanks to a word segmentation scheme
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preperformed by the database holders. In comparison to a
line-based approach, segmentation of a text into words has
a lower computational cost. It has been shown that
combination of different systems is complementary and
more efficient. In this work, three HMM-based classifiers
are combined. The three systems differ from their segmen-
tation strategy and from the type of character modeling,
which make them complementary. In order to build
different systems, we have considered a first system that
relates the character states to a clustering of the observed
frames extracted from a sliding window. In contrast to this
system, the second system refines character states according
to small character variations. Those variations are due to the
hand movement (ductus) when forming basic writing units
which is under the control of the eye and the brain [13]. In
[14], it is shown how such movement can be artificially
generated according to delta lognormal laws. The basic
units may be strokes, letters, parts of words, or whole
words. Thus, the context of a character within a writing unit
has great influence on its shape (see Fig. 2). For a given
character, we have considered the influence of neighboring
characters on its shape. We have used our knowledge of
ligatures and the shapes of leftmost or rightmost parts of
neighboring characters to assist the modeling of individual
letters. Such knowledge has been embedded in decision
trees used by our state clustering process (Section 4) and
results in more accurate character models. Then, we have
considered a third system where characters’ states corre-
spond to subunits such as graphemes.

Within the HMM framework, there are several ways to
introduce context when modeling individual letters. One
method consists of extending the size of sliding windows to
capture the pixels or the features around the current
character. Another method consists of adding features from
neighboring windows to the current window. The first
method is limited to capturing a close neighborhood (4 to
8 pixels) and the resulting observation probability densities
may have large variance since the neighborhood is highly
varying. Such variance is not desirable for an accurate
character modeling. The second method is also limited to a
close neighborhood since the larger the neighborhood, the
larger the dimension of the feature vector extracted. This is
also not desirable since it is well known that high-
dimensional vectors need a large amount of data to
estimate their distribution (the curse of dimensionality).
An alternative method is to build different character
models according to different contexts, i.e., specifying the

models of a character depending on its context. This
approach is known as the context-dependent approach in
the domain of speech recognition and has been applied to
printed character recognition [15]. To our knowledge, only
a few works deal with contextual modeling in handwriting
recognition [16], [17], [18].

Contextual approaches lead to excessive growth in the
number of models since one model is needed for each pair of
adjacent characters. Parameter estimation may be unreliable
since, for practical applications, a restricted set of training
data is generally available. It is thus desirable to reduce the
number of models and model parameters while preserving
model refinement. Hence, model sharing and parameter
tying are necessary to reduce the number of parameters.
Schussler and Niemann [16] describe a context-dependent
system using HMMs, where all subword units (from
monographs to the whole word) are modeled within a word
hierarchy. Models with not enough training samples are
eliminated. The system is tested on a small and dynamical
lexicon. The state-based tying proposed by Natarajan et al.
[15] uses a mixture of 128 Gaussians associated to each state
position of contextual models (trigraphs) corresponding to
the same base character. The total number of models can also
be reduced as in [18] by clustering all trigraphs according to
contexts described not as characters but as ascending or
descending strokes. Fink and Plotz [17] also proposed a
system based on contexts, these contexts being defined as
broad categories. A data-driven clustering of the 1,500
Gaussian densities of the mixture is performed at each state
position and for each category. It is worth noting that
clustering and tying the contextual models may offer, in
addition to reducing the number of parameters, the
possibility to automatically capture common contextual
effects on handwriting a given letter.

The context-dependent system described below has
some common characteristics with the context-based
systems described in [15] and [17]. In both, trigraphs are
modeled and parameters are shared at each state position.
Our system contrasts with these previous approaches as our
state clustering is knowledge-driven: We cluster models
using decision trees where questions at each node are
expert-based and specific to the way handwritten characters
are drawn. In addition, we include context from the
neighboring windows by adding dynamic features (deriva-
tive) in each feature vector. Such dynamic and contextual
information drastically improves handwriting recognition
(see Sections 3.1.3 and 4).

The paper is organized as follows: Section 2 gives an
overview of the overall combined system. Sections 3 and 4
detail our sliding window systems. First, preprocessing and
feature extraction are described in Section 3.1. Then, Sec-
tion 3.2 presents the generic system, using context-indepen-
dent models. Finally, Section 4 introduces the enhanced
sliding-window system with context-dependent models
where states are clustered using a decision tree. The last
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Fig. 1. Sample handwritten mail of the Rimes database and extracted

words.

Fig. 2. Influence of context for handwriting on two words written by the

same person (“Monsieur,” “distinguée”).



system, using explicit segmentation, is described in Section 5.
Section 6 is dedicated to the proposed combination. We
compare the enhanced system to the generic system and to
related works in Section 7. Section 7 also compares the overall
combined system to several state-of-the-art systems. Experi-
ments are reported on three different databases: Rimes [19],
IAM [20], and OpenHart [21].

2 SYSTEM OVERVIEW

The aim of this study is to build an efficient word recognition
system resulting from the combination of three HMM-based
recognizers (see Fig. 3). The first system is a context-
independent HMM-based system which includes dynamic
information. The second recognizer is an original sliding
window system which aims at enhancing performance
accuracy and reducing decoding time. Performance is
improved through contextual modeling, which provides a
more accurate modeling of writing units. Decoding time
reduction is obtained by reducing the number of Gaussian
densities associated to state models. The smaller the number
of Gaussians, the faster the computing of observation
probabilities. In this work, reducing the number of Gaussian
densities mainly relies on state tying. State tying consists of
sharing the Gaussian densities associated to the states of
trigraph models. Here, it is performed at each state position
through a decision tree-based clustering. The decision tree is
built according to expert-based questions on how characters
are written. It is worth noting that in addition to decoding
time reduction, state tying may lead to a better modeling by
taking into account the dependency that may exist in
different letters’ models. The third system is a hybrid
HMM/neural network-based system where observation
probabilities are computed through a neural network.

These three systems are combined through a neural
network-based classifier which outputs a scored list of
candidate words. The combining system takes, as input, the
scored lists provided by the three recognizers in order to
fuse them in one output ranked list.

3 DYNAMIC CONTEXT-INDEPENDENT SYSTEM

The first HMM system is based on the sliding window
approach. The system includes dynamic information
related to derivative features. These features are computed

from neighboring windows. As mentioned in Section 1,
adding such features in the current window is one way to
introduce context from neighboring characters. We will
show in Section 7.2.2 that such derivative features are
highly useful for the recognition of handwritten words. We
first describe below the preprocessing and feature extrac-
tion steps of the context-independent system.

3.1 Preprocessing and Feature Extraction

3.1.1 Normalization and Preprocessing

The first steps of a recognition system consist of preproces-
sing the input images and extracting features. We limit the
preprocessing to deslanting images since we have observed
that words in the Rimes database are slanted with negligible
writing skew. The features extracted are independent of the
height of the word image and the HMM modeling can cope
with sequences of variable length so that it can cope with
variable word width. We also search for the main baselines
around the word core zone to capture features related to
descending and ascending strokes. Deslanting and baseline
extraction are based on the work of Vinciarelli and Luettin [9].

3.1.2 Feature Extraction

Feature extraction is based on the work of El-Hajj et al. [11],
[22]. The set of features is directly derived from the set
defined by El-Hajj for Arabic handwriting, except for the
fact that the sequence of vectors is extracted from left to
right (through overlapping windows) instead of right to
left. The windows are divided vertically into a fixed
number of cells. Within each window, a set of geometric
features is extracted; w features are related to pixel densities
within each window’s column (w is the width of the
extraction window, in pixels), there are three density
features extracted within the whole frame and above and
under the lower baseline, two features are related to
background/foreground transitions between adjacent cells,
and three features to the gravity center position, including a
derivative feature (difference between y positions). Twelve
other features are related to local pixel configurations in
order to capture stroke concavities. A subset of features is
baseline dependent.

The features related to pixels densities are calculated
directly on the gray-level images, unlike what is done in
[22] and [11], where only binarized images are used, though
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Fig. 3. System overview.



we estimated a binarization threshold for each image using

the Otsu method [23] for the computation of features related

to foreground/background transitions and pixel configura-

tions. We optimized the features extraction parameters on a

validation database: window width w, overlap between two

sliding windows �, number of cells per window nc. The

experimental setup is discussed in Section 7.2.1.

3.1.3 Dynamic Features

We introduce context at the feature extraction level through

derivative features. In [5], Wieneke et al. also consider

horizontal derivation of feature vectors in order to capture a

wider temporal context at the frame level. Actually, such

features represent the dynamics of features around the

current window. The feature vector at horizontal pixel

position p contains information on the frame at position p but

also on the context of this frame from windows at positions

p� ��K to pþ � � K (� is the shift of the window and K is

the number of windows participating to the derivative

feature). The derivation is computed with a regression. In

the speech recognition domain, the first and second-order

regressions are known as delta and delta-delta coefficients.
Let ooooooook be the feature vector at the horizontal pixel

position p and ooooooookþi (respectively, ooooooook�i) the feature vector of

the sliding window shifted by i � � (respectively, �i � �)
pixels from the current window, at pixel position pþ i � �
(respectively, p� i � �). The first-order regression of feature

vector ooooooook is written

�ooooooook ¼
PK

i¼1 iðooooooookþi � ooooooook�iÞ
2
PK

i¼1 i
2

; ð1Þ

K is the chosen depth of the regression, giving the number

of surrounding feature vectors (2 �K) used for computing

the dynamic features. The second-order regression ��ooooooook is

simply derived from (1) by replacing ooooooook by �ooooooook. The final

feature vector is thus the concatenation of the original

vector ooooooook, its first-order regression vector �ooooooook, and

optionally its second order regression vector ��ooooooook. We

show in Section 7.2.2 that the dynamic features obtained by

such derivations are efficient for handwriting recognition.

3.2 Training and Recognition

The dynamic context-independent system uses the analy-

tical strategy and is segmentation-free. A word is modeled

by the concatenation of its compound character models. All

character models share the same HMM Bakis topology:

S emitting states, one self transition, and left-right transi-

tions allowed to the next two states. We consider HMMs

with continuous observation densities so that the observa-

tion probability density for each state is a mixture of

NG Gaussian distributions. This mixture is obtained by

incrementing, step by step, the number of Gaussian

distributions in each state until a convenient HMM

topology is reached. The number of Gaussian distributions

is increased as follows:

. The mixture has n components and it is to be
increased to nþm.

. For the kth mixture to be added, k 2 ½1; . . . ;m�, find
the mixture with the largest weight and split this
mixture:

- divide the weight in two halves,
- clone the mixture, and
- add perturbation to each mean vector cloned by

adding (respectively, subtracting) to it a small
standard deviation �split (default �split is 0.2).

The HMM models are initialized with one Gaussian
distribution per state and are trained thanks to the Baum-
Welch algorithm. Then, for each Gaussian mixture incre-
menting step (n� > nþ 1), HMM models are retrained with
this same algorithm. The experimental setup is described in
Section 7.2.1.

Since the system is context-independent, a single model
corresponds to each letter. In the following, we call these
context-independent models “monographs.” The system
aims at recognizing handwritten words in the French
handwritten mail of the publicly available Rimes database
(see Section 7.1). French words include a number of
diacritical marks (accents) and the words’ meanings are
changed according to these marks. For instance “annule”
means “cancel” and “annulé” means “canceled.” This
makes the recognition of French handwritten words a
challenging task. This mail also includes contract numbers
and dates (see Fig. 1). Thus, we define a total of 78 different
case and accent sensitive monographs, which can be letters
(accentuated or not), numerals, or symbols (hyphen,
apostrophe, etc.).

Decoding is performed with the Viterbi algorithm. There
is no prior on the likelihood of words so that all of the
words contained in the test lexicon have the same
probability of occurrence. We use the Hidden Markov
Model Toolkit (HTK [48]) for training and recognition.

4 DYNAMIC CONTEXT-DEPENDENT SYSTEM

We have shown in the previous section how to introduce
context at the feature level through derivative features. Now,
we exploit the fact that a letter within a word adapts its
shape to its adjacent characters. In the system presented
here, the context is introduced at the model level: Char-
acters’ models differ according to their surrounding char-
acters. In the speech recognition domain, such context-
dependent modeling [24] has been proposed to take into
account the coarticulation effect between phones.

As mentioned in the Introduction (Section 1), very few
works in the handwriting recognition domain take advan-
tage of context-dependent modeling. Actually, a major
drawback of building context-dependent models is that the
number of HMM parameters related to all possible letter
contexts increases remarkably and there might be a lack of
training data. This number of parameters can be reduced by
sharing them between several models, and by selecting the
characters to be context-dependent.

Our dynamic context-dependent system is illustrated in
Fig. 4. This system is motivated by the fact that a large
amount of character models (monographs) need refine-
ment. We show in Section 4.1 that the likelihood of a
number of monographs has a very large variance. In order
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to efficiently train the system, reach high accuracy, and
fasten decoding time, we propose building trigraph models
instead of monographs and sharing parameters between
those trigraphs. To reduce the number of trigraph para-
meters, we propose in Sections 4.3 and 4.4 a tying process
which is based on a decision-tree state clustering relying on
original expert-based questions. Preprocessing and feature
extraction are similar to those described in Section 3.1.

4.1 Likelihood’s Variance of Monographs

We propose using the likelihood’s variance of a monograph

to evaluate its efficiency for modeling a handwritten

character. A monograph with a highly variable likelihood

corresponds to a model that is not quite precise enough. The

likelihoods are computed through Viterbi alignment for

each monograph and in each training word. The like-

lihood’s variance of monograph mi is calculated as

�2
Lmi
¼ 1

Nmi

PNmi

j¼1 ðLj;mi
� L̂mi

Þ2, where Nmi
is the number of

examples of monograph mi in the training data set, Lj;mi
is

the likelihood of monograph mi in the jth example, and L̂mi

is the empirical mean of mi’s likelihoods.
Fig. 5a shows the likelihood’s variance for each mono-

graph. These monographs belong to the Rimes training
database of handwritten words (see Section 7.1). Seventy
percent of the monographs have a variance greater than 10
and 50 percent of them have a variance greater than 15. Fig. 5b
shows the number of examples of the same monographs
(ranked according to their likelihood’s variance).

Looking to the Fig. 5b, it seems clear that the variance of
the likelihood for a monograph is not necessarily related to
the number of samples available. Monograph numbers 59,
61, and 64 in Fig. 5b do have small likelihoods’ variances for
a relatively large number of samples. Similarly, mono-
graphs number 1 to 5 have the largest variances for few
examples. Hence, the selection of monographs to be
contextualized could be performed on a validation set from
a search of the best compromise between the number of
examples related to a monograph and its likelihood’s
variance, though we decided to act on a finer level and
the method presented in Section 4.4 operates at the state
level. The proposed decision tree-based clustering selects
which states of the monographs need to be contextualized
and how these contextualized states should tie their
Gaussian probability density functions.

4.2 Context-Dependent Character Models

The principle of context-dependent modeling of characters
is quite natural, as it is obvious that our way of writing a
character within a word evolves with its adjacent letters. An

example of contexts influencing shape of letters can be seen
in Fig. 2 for the lowercase characters “n” and “i.”
Considering that the two words have been written by the
same person, we can easily imagine that the shape of letters
is highly variable in a large writer-independent database.

The idea of context-dependent modeling is that instead
of defining a word as a succession of characters, we define it
as a succession of characters and their contexts. The
monographs of Section 3.2 are replaced by trigraphs where
the central character is influenced by the character on its left
(left context) and the character on its right (right context). A
left context is defined with a minus “�” sign, and a right
context with a plus “þ” sign. For example, in Fig. 2a, the
letter “i” is surrounded by an “s” and an “e”: The
corresponding trigraph is written: s� iþ e. Similarly, in
Fig. 2b, the trigraph corresponding to the letter “d”
surrounded by a blank and an “i” is written: ; � dþ i.

Once the models to be trained have been defined, the
next step is the training phase. Training could be done
directly on the trigraphs. However, a number of trigraphs
which scarcely appear in training data would be badly
trained. Moreover, the amount of computations to be made
would be huge when increasing the number of Gaussian
distributions per state. For a vocabulary of 1,500 words,
more than 4,500 different trigraphs exist. If each final model
had S emitting states and NG Gaussian distributions, if S
and NG are of the order of 10, the number of distributions to
compute would be nearly half a million. Considering that
the Rimes database contains approximatively 50,000 words
for the training phase, there may not be enough data to
correctly estimate all parameters. That is why clustering
and parameter tying are now taken into consideration. They
solve two kinds of problems: lack of training data and an
overabundance of models.

4.3 Training Overview

In this section, we present an overview of the training
process for estimating the parameters of the trigraph
models. The training process relies on parameter tying
through state clustering, as illustrated in Fig. 6.

We start with trained monographs with one Gaussian
distribution associated to each state. Trigraphs are initi-
alized by copying monographs. All of the trigraphs
associated to a given central letter are listed in the training
database, and the initialized monograph model of the
central letter is given as a first model for all those
trigraphs. Then, a first and rough estimation of the trigraph
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Fig. 5. (a) Likelihood’s variance of monographs and (b) number of

training samples for each monograph. Monographs are ranked accord-

ing to likelihood’s variance.

Fig. 4. Context-dependent HMM-based system overview.



parameters is obtained with a single iteration of the Baum-
Welch estimation algorithm on all of the different
trigraphs. During the Baum-Welch estimation, we consider
that state transition matrices are tied since we have
observed that modifications in the transition matrix
coefficients had very little influence on the recognition
step. Regarding this, we impose that all trigraphs with the
same central letter (all � � bþ � for instance) have the same
transition matrix. Hence, the number of matrices to
compute is reduced to the number of initial monographs.
It can be noted that only the trigraphs present in the
training database are created through this process.

The second step is the state tying process. State tying
determines which states can share the same Gaussian
distributions. As mentioned in Section 1, there are several
methods which perform such tying. We choose a state
position-based tying, such as performed in [17] and [15].
The principle is that for a given central letter, all states
corresponding to the same position in an HMM model are
subject to agglomerative clustering. Contrarily to [17] and
[15], we use expert-based decision trees to perform state
clustering. The process is described in detail in Section 4.4
and is illustrated in Fig. 6 for the central character b. It
enables us to divide the total number of states by nearly ten.

Finally, a gathering of identical models is done. Actually,
state clustering means fewer state models; many trigraphs
find themselves sharing exactly the same states as other
ones. This enables us to reduce the final number of different
trigraph models by nearly a third.

4.4 Decision-Tree State Clustering

For a given character c,Nc different trigraphs with c as central
letter exist. Let S be the number of states for trigraph models.
For each state position i (1 � i � S) of the � � cþ � trigraphs,
Nc different state models are to be computed and the total
number of states, for all trigraphs centered on c, isNc�S. The
tree-based clustering of states enables the reduction of the
number of different state modelsNc for each state position. It
results in pools of states, so that the ith state of each � � cþ �
trigraph takes its value within the nc;i different models
defined after the clustering, where nc;i < Nc.

Decision tree-based clustering is an alternative to data
driven clustering based on another distance measure
between models (maximization of the log-likelihood) and
on a more controlled split of clusters. The merging or
splitting of state clusters is driven by a binary tree whose
nodes correspond to rhetorical questions on the character-
istics of the models. Such decision trees have been designed
for speech recognition at the phone level by experts [25]. To

our knowledge, no work using such trees for handwriting
recognition exists.

In our case, decision trees are based on a set of questions
on the behavior of left and right contexts, and are applied to
states. Based on the same initial set of questions, one tree is
built for every state position of all trigraphs with the same
central letter. Starting at the root node, all of the states
corresponding to the same position and the same central
letter are gathered in a single cluster. Then, the binary
question which maximizes the likelihood of the two
children clusters it would create is chosen, and the split is
made, creating two new nodes. This splitting continues
until the increase in likelihood falls below a threshold or no
questions are available to create nodes with a sufficient state
occupancy count.

Let us consider a node containing the set of states SSSS to be
split in a given tree. The set SSSS corresponds to the set of
training frames fofgf2FFFF . As all states in SSSS are tied in the
node, they all share the same mean �ðSSSSÞ and variance �ðSSSSÞ.
The likelihood of SSSS generating the set of frames is hence
given by

LðSSSSÞ ¼
X
f2FFFF

X
s2SSSS

logðPrðoooof ;�ðSSSSÞ;�ðSSSSÞÞÞ�sðoooofÞ; ð2Þ

where �sðoooofÞ is the a posteriori probability of frame oooof being
generated by state ssss. Based on the work of Young et al. [26]
and assuming that we work with Gaussian probability
density functions, LðSSSSÞ can be rewritten

LðSSSSÞ ¼ � 1

2
ðlog½ð2�Þnj�ðSSSSÞj� þ nÞ�ðSSSSÞ; ð3Þ

�ðSSSSÞ is the accumulated state occupancy of the node,
�ðSSSSÞ ¼

P
f2FFFF

P
s2SSSS �sðoooofÞ, and n is the dimension of the

feature vectors.
We then introduce �Lq:

�Lq ¼ LðSSSSqþÞ þ LðSSSSq�Þ � LðSSSSÞ: ð4Þ

The split of the state set into two subsetsSSSSqþ (the answer to q is
yes) and SSSSq� (the answer to q is no) is made by question q�

which maximizes �Lq, provided that �ðSSSSqþÞ and �ðSSSSq�Þ are
over the minimal state occupancy threshold and that �Lq is
above the threshold of minimal increase in likelihood. This
condition can be reformulated [27]:

q� ¼ argminq
�

�ðSSSSqþÞlogðj�ðSSSSqþÞjÞ

þ �ðSSSSq�Þlogðj�ðSSSSq�ÞjÞ � �ðSSSSÞlogðj�ðSSSSÞjÞ
�
:

ð5Þ

The parameters ensuring efficient sizes of state clusters,
namely, the minimal state occupancy threshold and the
minimal increase in likelihood, are tuned on the validation
database (see Section 7.2.3). For a given monograph, the
depth of the resulting trees is linked to the monograph
likelihood variance and to the number of examples
mentioned in Section 4.1. Actually, the larger the variance
and the number of samples, the deeper the monograph’s
state trees and the larger the number of different trigraphs
defined from the original monograph. Similarly, trees
reduced to only their root are observed, corresponding to
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Fig. 6. Illustration of state clustering for the trigraphs centered on

character b.



monographs with few examples which aim to tie all of their
corresponding trigraphs into a single model.

We defined a set of expert-based questions that gathers
look-alike character’s context shapes. These questions are
used to build the state clusters trees. Trigraphs within the
same character-cluster may tie one or more of their states
within a state-cluster, as shown in Fig. 7. To ensure efficient
parameter tying, the shape of the context should be similar
enough for the trigraphs in the same cluster. The set of
questions includes global questions, yielding large clusters
of characters, and more precise ones, yielding smaller
clusters. It is important to propose both global and precise
questions. If all questions were precise, only a few states
could be shared within trigraphs. On the contrary, if all
questions were global, a very large number of states would
be shared, resulting in models similar to monographs. Here
are some examples of questions:

. (global question) Is the left context uppercase?
lowercase? Does it have an ascender? A descender?
Or is it a small letter?

. (global question on the main shape of a context)
Does the right context contain a loop (“��o”, “��a”,
but also “��d”, etc.)? A bar (“��t”, “��p”, etc.) ?

. (precise question on the shape of a context) Is the
link with the previous letter on the upper baseline
(“vþ�”, “wþ�”, etc.)? On the lower baseline (“aþ�”,
“cþ�”, etc.)?

An example of decision tree is given in Fig. 7. It represents
the tree calculated for the second state of all the trigraphs
centered on the lowercase character b. (Bold lines are not to
be taken into account for now on Fig. 7). Some of the
questions we defined can be found in Appendix A, which
can be found in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.
22, the rest of them are downloadable from [28].

Finally, once the state tying is completed, the system is
ready to finish the training of the models with a high level
of refinement. Using the Baum-Welch algorithm for model
reestimation, we increase the number of Gaussian distribu-
tions per state, up to a chosen number NG. We finally reach

a similar topology to the generic context-independent
system, with S emitting states and NG Gaussian distribu-
tions per state for all of the monographs and trigraphs. This
enables us to directly compare the two sliding window-
based systems.

4.5 Recognition

Apart from the interesting expert-based clustering pre-
sented above, the tree-based clustering also overcomes the
problem of unseen trigraphs. Actually, if we had chosen
data-driven clustering, the state models would be clustered
in a different way (data-driven clustering is based on
euclidean distances between states) and new trigraphs not
seen in the training phase could not be modeled. Since test
lexicons often differ from training lexicons, the capability of
modeling new unseen trigraphs is essential.

The modeling of new trigraphs with decision trees is
very simple: Each state of the trigraph is positioned at the
root node of the tree corresponding to the same state
position and the same central letter. Then, each state
descends the tree to which it belongs, answering questions
on the trigraph contexts, until it reaches a node where a
cluster is positioned. The state model representing the
cluster will be the model assigned to the considered state
number of the trigraph for its recognition. This is illustrated
with bold lines in Fig. 7 for state position number 2 of the
new unseen trigraph m� bþ e. The clustering tree for this
state and this central letter was computed during the
training phase. Placing state number 2 of m� bþ e at the
root node of this tree, a first question is asked: “Q0: Is left
context lowercase?” As m is lowercase, the answer is yes, so
the state goes down to the right-hand side node, where a
new question is asked (“Q1”) and answered (yes), etc. In the
end, state number 2 of m� bþ e reaches the cluster named
s2 1: It is the chosen model for this state.

The ability of trees to model any unseen trigraph with
existing ones was very helpful for our experiments on the
Rimes database, which will be presented in Section 7.1, as
the test and training dictionaries were different and
hundreds of new trigraphs had to be modeled.

5 HYBRID HMM/NEURAL NETWORK SYSTEM

The third system in the combination is also HMM-based but
relies on a presegmentation of words into grapheme
components, in contrast to previous systems which rely
on sliding windows.

5.1 Grapheme Segmentation

In this system, the word recognition is based on an explicit
segmentation of the word in subparts called graphemes.
The segmentation is an oversegmentation, which means
that a grapheme is either a character or a subpart of a
character. The grapheme segmentation process is composed
of the following steps: First, we detect the connected
components and extract the internal and external contour
information. Then, the skeleton of each connected compo-
nent is computed and represented in a graph. Potential
segmentation points are detected (bottom part of concav-
ities, extremities of horizontal segments). Graphemes are
defined as vertical or diagonal arcs which can be linked
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Fig. 7. Example of a decision tree for state clustering (questions and

clusters are shown for the second state of all ��bþ� trigraphs), and

example of cluster allocation with a trained decision tree for state

position number two of unseen triphone m� bþ e.



without crossing a potential segmentation point. Then, the

remaining arcs are either attributed to a neighboring

grapheme or identified as a ligature. Finally, images of

each potential grapheme are retrieved from the labeled arcs.

5.2 Feature Extraction

The features extracted for each grapheme are relatively

simple and can be computed very quickly. They are

composed of the height and width of the bounding box of

the grapheme (2 values), height-width ratio (1 value),

position of the top and bottom of the bounding box with

respect to the baseline (2 values), position of the gravity

center of the grapheme in the bounding box (2 values), black

pixel density in the bounding box (1 value), black pixel

density in three zones: above, under, and inside the baseline

(3 values), surface of the loops in the three previous areas

(3 values), value of the top, bottom, left, and right profiles of

the grapheme taken in five points (4�5 values), cumulated

thickness of the grapheme, horizontally, vertically, and along

the two diagonals (for each direction, the thickness is

computed in five parallel areas—4�5 values). The features

are normalized with respect to the baseline height. The total

number of features is 74.

5.3 Neural Network

In this system, a neural network is trained to evaluate the

posterior probability of each grapheme with respect to the

feature vector. The neural network is a multilayer percep-

tron with as many input neurons as features (74), one layer

of hidden neurons (400 neurons), and as many output

neurons as grapheme classes (172). The transfer function is

a softmax function. The neural network was trained in a

supervised way with a stochastic back-propagation training

algorithm.

5.4 Training and Recognition

Hidden Markov models are used to model the decomposi-

tion of the words into letters and then each letter into

graphemes. The topology of the model is a simple left-to-

right Bakis model topology with three states for each letter

HMM, each state corresponding to a grapheme. The hybrid

NN-HMM was trained using the following procedure:

1. Decode the training set with the hybrid NN-HMM
recognizer in order to create an annotated base of
feature vectors.

2. Train the neural network on the annotated base of
feature vectors.

3. Compute the sequences of observation probability
with the new neural network for all words in the
training set.

4. Train the HMM on the sequences of observation
probability using the Baum-Welch algorithm.

5. Go back to item 1 until no improvement is observed
in the recognition rate.

This procedure needs a basic recognizer to bootstrap the

process; the convergence is usually observed after 10 to

20 iterations.

6 SYSTEM COMBINATION

Classifiers combination methods have proven successful in
many applications, such as handwritten (isolated or
cursive) and printed recognition and verification, document
analysis, speech recognition, medical imaging, biometric
verification (face, signature, fingerprints recognition), in-
formation retrieval, and expert systems. See [29] for an
extended survey. Several combination schemes are possible
(in sequential, parallel, or hierarchical order), with and
without training [30] [31]. Here, we consider only combina-
tions in parallel since we combine lists of candidates
provided by expert classifiers considered as independent.

In [32] and [11], Al-Hajj et al. proposed a new neural
network combination method in order to combine the
results of three HMM word classifiers with sliding
windows of different angles. This combination scheme
provided better results than standard state-of-the-art
methods (like Sum-Rule, Plural Vote, and Borda Count).
El-Abed and Märgner [33] also applied this method to a
larger number of classifiers. They successfully combined the
results of the 11 systems submitted to the ICDAR 2007
Handwritten Arabic Competition. Here, we propose an
improved neural network architecture, extending the work
presented in [32] and [11]. This architecture can reorder the
list of candidates so as to be able to compute the right
answer even if none of the individual classifiers provides it
in the first position.

6.1 Individual Classifiers’ Outputs

Each word classifier is denoted by Ci. Since here we have
three HMM classifiers, i 2 f1; 2; 3g. For every image to be
recognized, each classifierCi provides a list of d candidates cij
along with scores sij ¼ SiðcijÞ, with j 2 f1; . . . ; dg. The
scores sij are the normalized likelihoods of the d-best word
candidates for classifier Ci:

sij ¼ P ðOjMijÞ
�Xd

k¼1

P ðOjMikÞ; ð6Þ

whereMij is the HMM model of classifierCi for the word cij.
For each word to be recognized, the word classifier number i
(Ci) provides the following list of candidates:

ci1 si1 ¼ Siðci1Þ
ci2 si2 ¼ Siðci2Þ
..
. ..

.

cid sid ¼ SiðcidÞ

0
BBB@

1
CCCA:

W is the lexicon. 8w 2W , SiðwÞ is the score of word w
according to classifier Ci. If w 62

Sd
j¼1 cij, then SiðwÞ ¼ 0.

6.2 Standard Methods

Sum-Rule. The sum-rule is one of the easiest ways to
combine lists of candidates. Yet it is quite resilient to
estimation errors [30].

Plural Vote. Plural Vote is a rank method. It considers
the top choices of each classifier. The class that is the most
frequent in the first d ranks is considered the best class.

Borda Count. Like Plural Vote, Borda Count is also a
rank method. A score is computed depending on its rank in
the list. If lists of d candidates are considered, the first place
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candidate receives d votes, the second candidate d� 1, etc.,

and the words of the lexicon not in the list receive 0 votes.
Exponential Borda Count. Exponential Borda Count is a

modified version of the Borda Count method, presented in

[34], resulting from the observation that the probability of

the correct word being at rank i decreases faster than

linearly as i increases. Hence, the ith-place candidate

receives a score of ðd� iþ 1Þp instead of d� iþ 1. The

value of p is found on a validation database.

6.3 Neural Network-Based Combination

Here, we use a neural network similar to the one proposed
by Al-Hajj et al. [32]. For the sake of completeness, we briefly
recall the method. A Multilayer Perceptron with one hidden
layer is used. A feature vector of dimension N2 (where N is
the number of classifiers) is extracted from the lists of
candidates provided by the classifiers (using the scores
described above, see (6) in Section 6.1). The neural network
has N sigmoid outputs. Each of those N outputs (denoted
outi with i 2 f1; . . . ; Ng) represents the confidence value of
the corresponding classifier. The number of hidden cells is
determined empirically. As a result of the combination, the
top candidate of the classifier ending with the highest
confidence score according to neural network is selected:
classNN ¼ ck1, where Ck is the most reliable classifier
according to the neural network. Hence,

outk ¼ max
i2f1;...;Ng

outi:

We propose an extension of this combination scheme.
The neural network described above was trained to select
the best classifier. Then the result of the combination was
the best answer of this selected classifier. A drawback of
this method is that if none of the classifiers output the right
answer in first position, the combination has no chance of
finding the true class (no reordering of answers is made).
The feature vector considers only the results in first position
for each of the classifiers. One way to improve the results
could be to go deeper in the candidate lists in order to allow
more answers than just the top candidate of each list. The
size of the feature vector now becomes N2 � d and the size
of the output vector N � d. Again, the number of hidden
cells is found empirically.

The feature vector for the combination of 2 classifiers is

feature vectðdÞ ¼
"
S1ðc11Þ; S2ðc11Þ; S1ðc21Þ; S2ðc21Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1st position

; . . . ;

S1ðc1dÞ; S2ðc1dÞ; S1ðc2dÞ; S2ðc2dÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d�th position

#T
;

where SiðckjÞ is the score provided by classifier i for the
hypothesized word ckj ranked at jth position by classifier k
(see Section 6.1). This feature extraction can be easily
extended to N classifiers.

In this extended scheme, the first answer is not the only
one considered. The output vector has N � d components.
Here, we describe the target vector for the combination of
two classifiers. This target vector can be easily extended to
N classifiers. If w� is the true class of the word, then:

target vectðdÞ ¼
"
�ðc11; w

�Þ; �ðc21; w
�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1st position

;

�ðc12; w
�Þ; �ðc22; w

�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd position

; . . . ; �ðc1d; w
�Þ; �ðc2d; w

�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d�th position

#T
;

and

�ðx; yÞ ¼ 1; if x ¼ y;
0; otherwise:

�
This new neural network provides a rescoring of the

candidates c1i (i 2 f1; . . . ; dg) and c2j (j 2 f1; . . . ; dg). Then
the sum-rule is applied to merge the answers of candidates
which correspond to the same word classes (i.e., those for
which c1i ¼ c2j). The example of Fig. 3 shows the lists of
candidates for all three systems and their combination
with a neural network taking the five best answers of each
recognizer (d ¼ 5). The detailed procedure to combine the
three outputs, given in Appendix B, which can be found in
the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TPAMI.2011.22, shows the
interest of applying the NN approach.

7 EXPERIMENTS

7.1 Rimes Database

The Rimes database [35], [36] was presented in 2006 and
gathers more than 12,500 handwritten documents written
by about 1,300 volunteers. It was created to provide data
relative to advanced mailrooms, and the panel of docu-
ments offers large variability and makes the database a
challenging one. Based on the Rimes database, it is possible
to proceed logo recognition, document structure retrieval,
and word and character recognition. Since 2007, evaluation
campaigns have occurred [19] which enable participants to
compare their results. In our work, we use the presegmen-
ted word images given by the database to perform isolated
word recognition. The database consists of 59,203 word
images divided into three subsets: 44,197 images for
training, 7,542 for validation, and 7,464 for testing. Word
samples are shown in Fig. 1.

For the Rimes database, three experiments are conducted
using different dictionary sizes. The first experiment
considers the full dictionary of size 5,334, including all
words from the training, validation, and test sets. The
second experiment considers only the reduced test dic-
tionary of size 1,612 words. The last experiment uses the
4,943-words dictionary of training and validation databases,
giving 392 out-of-vocabulary words (5.5 percent of the test
set). About 300 new trigraphs are present in the test set and
not in the other sets. This yields to the unseen trigraph
problem mentioned in Section 4.5.

7.2 Experimental Setup

7.2.1 Basic HMM Parameters for the Sliding Window

Systems

We first tune the basic parameters for the sliding window
systems. These parameters are the width of the window, the
number of cells, and the shift of the window for feature
extraction, and the number of states and size of mixtures for
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character models. We set these parameters on the validation
set for the Rimes database with a generic HMM recognizer,
context-independent, where no difference is made between
a letter accentuated, lowercase, or uppercase. Hence, “a,”
“A,” and “à” share the same models. This generic system is
trained on the Rimes train data set with different sets of
parameters and the corresponding accuracy is computed on
the validation data set. We calculated many sets of features
from the images, making the values of the window width w,
the shift �, and the number of cells nc vary. Values were
tested between 6 and 14 pixels for w, and between 10 and 20
for nc. We tested two values only for �: w=2 and w=2þ 1. For
each set, we made the number of states per model vary
from 5 to 15 in order to find the optimal number needed.
After this first exhaustive search, we noticed that higher
values for nc were the best, so we set nc to 20. We then kept
the four best sets of features along with their optimal
number of states per character model, and made the
number of Gaussians vary in each mixture from 8 to 40.
Table 1 shows these four experiments. The recognition rate
is computed case and accent-insensitive.

From these preliminary experiments, we choose to pick
the best feature set on the validation database, that is to say,
the one using windows of width w ¼ 8 pixels, with a shift of
� ¼ w=2 ¼ 4 pixels between two consecutive windows and a
vertical division of nc ¼ 20 cells, giving 28 different features.
We call this feature set the w8d4c20 set. The best number of
emitting states for this set is S ¼ 8. We choose to set the
number NG of Gaussian distributions per state to NG ¼ 20.
To make this choice, we considered the compromise between
accuracy and computational cost: Decoding time is de-
creased by 50 percent when using NG ¼ 20 instead of
NG ¼ 40, while the accuracy drops only of 3 percent, and
the difference between NG ¼ 20 and NG ¼ 30 is not large
enough to keep 50 percent more parameters to compute.
Finally, the basic HMM-sliding window systems parameters
for the Rimes database are: the w8d4c20 feature set, with
8 emitting states and 20 Gaussian distributions per state.

7.2.2 Features Derivation

Using the generic case insensitive recognizer presented
previously for the Rimes feature extraction parameter setup
and the w8d4c20 feature set with the convenient HMM
topology, we ran experiments on the base of first and second-
order regression of the features on the Rimes database. The
results are shown on Table 2 for systems trained and tested
on the same training and validation sets as Table 1.

We can deduce from this experiment that regression
significantly increases the recognition rate. However,
adding second-order regression decreases performance for
the Rimes database. This may be due to the overabundance
of features created compared to the size of the database (the
new number of features in this case is 3 � 28, where 28 is the
initial number of features). Further investigation on larger
databases might show if an enhancement can be observed
when using second-order regression, but it will not be used
in these experiments.

7.2.3 Thresholds Setup for Tree Splitting

As is presented in Section 4.4, tree splitting is done by
finding question q� maximizing �LðqÞ. Some parameters
have yet to be set in order to control the tree’s depth and the
maximization step: �LR and NS .

. �LR is the minimal value �Lðq�Þ can take at each
step. If the maximum of �L for a given node is
below �LR, then the node is not split and becomes a
states cluster.

. NS is the “minimal state occupation count” corre-
sponding to a cluster of states j 2 SSSS. It ensures that the
states in the cluster are correctly estimated. For a given
state j,Nj is the sum over all the training frames of the
probability of being in state j while a given frame is
observed. NS is the sum of the Njs over the set SSSS.

These two parameters are set on the validation database.
Fig. 8 shows the influence of NS on the final number of

different states in the Rimes system, given �LR. For these
experiments, we used mixtures of 10 Gaussian distributions
per state.

Clearly, the higher �LR and NS , the fewer the number of
final states. Fig. 9 shows the influence of this number of
states on the recognition rate on Rimes validation database.
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TABLE 1
Setup of Parameters on a

Generic Context-Independent Recognizer

The parameters are the window width w, the shift �, the number of
cells nc, and the number of states for character models. Recognition
rates are computed on the Rimes validation database.

TABLE 2
Comparison of the Different Orders of Regression for

Features on a Generic Context-Independent Recognizer

Recognition rate is computed on the Rimes validation database.

Fig. 8. Influence of NS on the final number of different states, for fixed
values of �LR, on the Rimes validation database.



With this in mind, we chose to set �L�R ¼ 450 and N�S ¼
450 for our system used on Rimes. The point corresponding
to ð�L�R;N�SÞ is colored in blue on Fig. 9. Graphically, it
corresponds to the leftmost-utmost point, that is to say, the
best equilibrium between the recognition rate (76.13
percent), the recognition time and the clusters computation
on the validation database for an 8-state per trigraph, 10
Gaussians per state topology. This system with these
parameters defines 1,924 different states.

Because of the decrease in the number of states, some
trigraphs happen to share exactly the same clusters for their
state models; hence they are strictly equivalent. This brings
the final number of different trigraphs to 2,130. This decrease
also causes some trigraphs centered on the same character to
share a unique model: the monograph model. Actually, some
monographs have few occurrences in the training database,
so, split into different trigraphs, the state occupation counts
do not reach high levels. The following central characters are
those whose trigraphs models gather all in one (given the
parameters chosen in this paragraph): 1, 2, 3, 4, 6, 7, 8, 9, A, B,
C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, T, U, V, W, X, Y, Z, k,
w, y, z, à, â, ç, �E, è, , ë, ı̂, ı̈, ô, ù, û, /, and %.

This makes 51 remaining monographs within the
trigraphs, and 78� 51 ¼ 27 monographs split in 2,080
different models, sharing about 1,530 states. The systems
results shown on Fig. 9 are computed with mixtures of 10
Gaussian distributions per state. For the chosen pair
(�L�R ¼ 450, N�S ¼ 450), we incremented the number of
mixtures up to 20 in order to compare our new results to
those we previously published on the same database [37].
We observed a 15 percent reduction of the error rate,
jumping from 74.1 to 78.0 percent of words correctly
recognized on the Rimes validation set. This shows that
our new method to learn models with tied states is more
precise and helps us to reach a better accuracy.

7.2.4 Sliding-Windows Systems Results

Results for the sliding windows systems on the Rimes2009
database [19], respecting the 2009 word recognition compe-
tition procedure, are given in Table 3. In this table, CI
means context-independent system, CD means context-
dependent, T stands for Rimes training database (44,197

images), and T+V for Rimes training plus validation
database (51,739 images). The size of each lexicon used is
given into the brackets. The first system is the context-
independent case-sensitive system run as explained in
Section 3.2, with eight states and a mixture of 20 Gaussians
per state. The second system is the context-dependent
system presented in Section 4. We counted a difference of
297 undefined trigraphs between the test and train-valid
lexicons. The decision trees presented in Section 4.5 enables
us to associate these trigraphs to existing state clusters.

The skeleton of this system is learned on the training
database: Decision trees and state clusters allocation to
trigraphs, as well as splitting thresholds, are set with the
44,197 training samples. The final number of different
states is 1,924. In order to improve our system accuracy,
we add the validation data to the training database, giving
51,739 examples for training. The improvement can be
seen in Table 3.

We can bring two main conclusions on the presented
sliding window systems from Table 3. First, the addition of
data in the training phase improves the recognition rate:
The improvement is greater than 2 percent for the context-
independent system and greater than 1 percent for the
context-dependent one. This is motivation to continue
adding data in the training step, after setting the system
skeleton. This issue is not discussed here, as we follow the
protocol of the Rimes competition, but this can be kept as a
system improvement for other applications. Second, the
modelization of characters with their context drastically
improves the recognition rate, whatever the size of the
dictionary. An increase of 4.8 percent in the accuracy is
observed for the smaller dictionary, and of more than
6 percent for the larger ones. These are very interesting
results: The context-dependent system performs better than
the context-independent one. The parameters of the context-
dependent system were efficiently estimated thanks to the
clustering method. Such clustering overcomes the issue of
the large number of trigraph models which increases with
the size of dictionaries. Without clustering, the accuracy of
the context-dependent system falls to 63.3 percent, as
shown in Fig. 9.

7.3 System Combination

In this section, we present the results of the three systems
presented in this paper and their combination on the Rimes
database.

7.3.1 Motivation

The counts of words correctly and wrongly recognized by
the context-independent and context-dependent systems on
the Rimes test set are presented in Table 4. The systems are
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TABLE 3
Comparison of the Proposed Sliding Window Systems,

with or without Context Dependent Models,
on the 7,464 Images in Rimes Test Database

Fig. 9. Influence of the final number of different states on the recognition
rate (Rimes validation database; 8 states/trigraph, 10 Gaussians/state
topology).



both trained on the largest database and tested with the
small dictionary. It appears that, if the context-dependent
system outperforms the context-independent one, there are
still 472 words well recognized by the latter, giving errors
for the former. This encourages us to use both systems in
combination, as different information is brought by the two
output lists.

We also observed from Table 4 that 1,119 words are badly
recognized by the two sliding-windows systems: This
represents 15 percent of the test database. This is why we
propose combining all systems, the two sliding-window
systems and the hybrid HMM/NN system presented in
Section 5. The recognition rates of the hybrid system on the
test set are of 79.5 and 72.5 percent for the test dictionary and
the full dictionary, respectively. We believe that the
combination of these three systems will improve the overall
performance since they rely on different modeling strategies.

7.3.2 Parameters Setup for Neural-Network

Combination

In [38], Duin criticizes the idea of training the combination
system on the same training set that has already been used
to train the individual classifiers. The reason is because the
outputs of the classifiers on the training set are not
representative for new objects. We have noticed empirically
that this claim is true. Training the individual classifiers and
the combination system on the same data led to poor
combination results, while splitting the training set and
using one part for training the individual classifiers and the
other for training the combination system provided much
better results.

The training set of 44,197 images is thus split into 36,445
and 7,752 images, with the list of their scores provided by the
HMM systems. The first part is used to train the three HMM
systems and the second one is divided into two subsets
(6,201 images for training and 1,551 for validation) to train the
neural networks combination system. The result of the
combination is estimated on a 7,742 independent test set.

We vary the considered depth (d) of the candidate lists
(which influences both the number of inputs and the
number of outputs of the neural network) from 1 to 10, and
also the number of hidden units (nhu) from 5 to 50 by
increments of 5. The right answer is usually among the first
candidates of each list. Increasing the value of d gives the
system the capability of retrieving the right answer even if it
is deeper in the list. But it also makes the task much more
difficult since it also introduces noisy features that are
irrelevant most of the time, and increases the dimension-
ality of the feature vectors and the number of parameters of
the neural network. The values of d and nhu are a trade-off
between the capacity of the neural network and the amount
of data available to train its parameters.

In the experiments we performed on a validation set, the
configuration with d ¼ 5 and nhu ¼ 30 provided good and
consistent results. It is selected as the best configuration
given the amount of data used to train the combination
neural network.

7.3.3 Combination Results

The three input candidate lists for the combination do result
from the two sliding windows systems (one context-
independent and one context-dependent), and the hybrid
system presented in Section 5. The result of their combination
via the different methods proposed in Section 6 are
presented in Table 5. Results are shown for the Rimes test
set, using the limited test dictionary.

Table 5 clearly shows that combining classifiers outputs
can drastically reduce the error rate. On average, each
classifier achieves a little less than 80 percent of recogni-
tion rate individually. Combined, they can reach nearly
90 percent, which corresponds to a 50 percent error
reduction. Regarding the combination methods, those
based on the rank (Borda Count, PluralVote, Exponential
Borda Count) are less efficient than the ones using the
recognition score (Sum-rule, neural network). The best
recognition rate is reached with the neural network
combination, with a recognition rate of 89.1 percent.

7.3.4 Extension to Other Databases

The rhetorical rules designed for the Latin cursive script and
for the Rimes database can easily be applied to another
database. As an example, we apply the same rule set to the
publicly available IAM database [20] which provides 9,862
handwritten text lines segmented into words. We extract
from the correctly segmented and annotated text-line images
[39] a training set of 46,901 word images, two distinct
validation sets containing, respectively, 6,442 and 7,061
word images, and a 13,752 words test set. We observed that
the sizes of the characters in this database (in terms of pixels)
were similar to the sizes of the characters in Rimes database.
Hence, we chose to use the same w8d4c20 extraction
parameters than those used for Rimes and to search for the
accurate number of states per character model. The training/
validation sets are used to select this number of states and
the (�L�R;N

�
S) clustering parameters. The best parameters

for the IAM database are the following: S ¼ 10 emitting
states per character model, �L�R ¼ 450, N�S ¼ 600. As
previously, the system is retrained with all training and
validation sets, keeping the same tree structures provided
during setting of the (�L�R;N

�
S) parameters.

We use a lexicon containing all the 10,500 words of the
IAM database (built from the training, validation, and test
sets). It can be noted that the size of this dictionary is greater
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TABLE 5
Comparison of the Different Combination Methods

Proposed on the Rimes 2009 Test Set

TABLE 4
Comparison of the Outputs of the CI and CD

Sliding Window Systems on the Rimes Test Database

Systems are trained on the training+validation database and tested with
the 1,616-words lexicon.



than that of the Rimes test dictionary (1,600 words). Results
for the IAM database are shown in Table 6. Recognition rates
are case sensitive. Results show that the context-dependent
system based on the same set of questions outperforms the
context-independent one. This shows that the questions
included in our rule set can be used for any language and
database using the same set of Latin characters.

We also trained and tested the hybrid system on the
IAM database in order to combine the three outputs as
proposed for the Rimes database. We reached an accuracy
of 78.1 percent on the word recognition task with the
10,500 words lexicon and without using any language
model. Thus, a comparison with systems such as [40] and
[41], which process whole text lines and use a language
model, is not straightforward. However, our 78.1 percent
word recognition accuracy is comparable to the accuracies
obtained at the word level by those systems: 74.1 and
79 percent, respectively.

We performed another experiment on Arabic script,
using the same features as those presented in Section 3.1.2,
except that we extracted them from right to left. Since the
set of characters is different, we designed another set of
rules to be applied on Arabic characters. This resulted in a
set of 75 rules we obtained after four hours. The decision
trees thresholds were set up on a validation database, in a
similar way to what is done for the Rimes and IAM
databases. The recognition system obtained with this new
set of rules also performed better than the noncontextual
one. The combination of this system and both the context-
independent and the hybrid ANN/HMM system excelled
at the OpenHaRT 2010 competition [21].

7.3.5 Comparison to the State-of-the-Art

The complete results of the neural-network combination on
the Rimes test set is presented in Table 7, along with the
results of the other systems presented in the Rimes2009
Handwriting recognition competition [19]. The word recog-
nition rate is calculated case insensitive and accent sensitive.

The UPV (Universidad Politecnica de Valencia) system is a
voting-based combination of different classifiers [41]. The
combined classifiers are three hybrid HMM/MLP systems.
They use restricted vocabularies for decoding, based on
image criteria (size, aspect ratio, etc.). The system presented
by Siemens is based on the Hidden Markov Recognizer
(HMR) for Latin script that is widely in use within Siemens
AG for postal automation projects [42], [43]. The pre-
processing is comparable to ours and the features extracted
from sliding windows are structural. The system presented
is also a combination of multiple recognizer outputs. The
difference between the combined systems is the topology of
the character HMMs and the sets of features extracted [44].
The Irisa system is based on continuous densities HMMs.
The preprocessing used is standard; the features are
extracted from sliding windows and depend on the image

zones, defined by the baselines [45]. The number of states
per character varies and the final results come from this
stand-alone system. The Litis proposed a system based on a
multistream segmentation-free HMM [46]. After a standard
preprocessing step, two sets of features are extracted
(contours based and density based) from two distinct
sliding windows on each image. Each set produces an
HMM system, giving a two-stream final model. The system
presented by Itesoft is based on the Non-Symmetric Half-
Plane Hidden Markov Model (NSHP-HMM) [47]. This
model combines a Markov Random Field (MRF) and a
HMM, and works directly on binary patterns. It can be
noted that the system is inherently accent insensitive, which
yields lower results for these recognition tasks.

Results in Table 7 show that our proposed system
performs better than the other HMM-based systems. The
absolute increase in accuracy for top-1 results is higher than
3 and 2 percent compared to the UPV system and according
to the size of the dictionary. In [19], the results of our
previous system reached 80.2 percent on the small dic-
tionary and 76.5 percent on the larger one. We now reduce
the error rate of our system by nearly 9 percent. This gap is
mainly due to the fact that the system we worked with in
2009 did not include accents. It is also due to better
refinement in finding appropriate thresholds for tree
splitting and enhancing the training procedure.

While our top10 accuracy is comparable, Table 7 indicates
that recurrent neural networks (RNNs) can reach, on the
same database and with the same protocol, remarkable top1
accuracy as high as 93.2 percent on the small dictionary. This
could be due to several reasons. First, RNN training is
discriminative while HMM training is generative (at least for
the Dynamic Context-Dependent and Context-Independent
systems which are GMM-based). Second, the feature
extraction used by the RNN is adaptive (learned from the
data) and might be better than the handcrafted ones that we
use. And third, unlike the HMMs, where the probability of
each observation depends only on the current state, RNNs
do not make the assumption of independence of observa-
tions. Hence, we look forward to combining HMMs and
RNNs in the future as it seems very promising.

8 CONCLUSION AND FUTURE WORK

We introduced a novel approach to build efficient context-
dependent word models based on the HMM framework.
The key features of such approach are the use of dynamic
features and state-based clustering. The clustering of
trigraph states is performed at each state position and based
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TABLE 7
Comparison with the State-of-the-Art HMMs and Non-HMMs

Systems on the Rimes 2009 Test Database (from [19])

TABLE 6
Performance of the Proposed Systems

on the IAM Test Database



on binary trees. We proposed a set of expert-based questions
on how characters are drawn and linked together. The
context-dependent modeling proved to be more efficient on
publicly available data. We also showed that context-
dependent systems can be complementary to context-
independent ones in a way that their combination performs
better than other state-of-the-art HMM-based approaches.

Future work consists of improving the contextual-based
system following two main directions: feature extraction
and modeling. Additional features may complement the
current 28-feature frames. One idea is to add features
related to correlations between cells of different frames.
Such correlations may exist in handwriting since strokes
vary slowly. However, adding such features may require
additional data frames to correctly estimate the additional
parameters. Improved HMM models can also be built by
estimating nondiagonal covariance matrices. Since too
many parameters may be estimated, semi-tied covariance
matrices may be obtained by applying a common transform
to diagonal matrices. Other transforms can be searched to
adapt the HMM models to a specific writer. In the case of
the Rimes database, all words from a given letter document
are written by the same writer. This could be performed in
an unsupervised way when enough words from each writer
are available. Finally, language models can efficiently
improve HMM systems by correctly reranking the scored
words provided by the recognition process. Language
models such as bi-gram or tri-gram models are built from
large corpora of text documents and can be used when
words are provided within sentences.
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