

Revisiting N-Gram Models: Their Impact in Modern Neural Networks for HTR

Solène Tarride and Christopher Kermorvant

Are n-gram models still useful with modern architectures?

- N-gram language models were once crucial to enhance performance in Automatic Text Recognition (ATR)
- Over time, explicit language models have been overshadowed by models with implicit language modeling capabilities (transformers)
- Integrating explicit n-gram models with transformers
- \rightarrow Impact on transformer performance vs. CRNN-CTC?
- \rightarrow Effect on inference speed?
- N-gram models are applicable at different text granularity

 \rightarrow Which granularity is the most effective? Characters? Subwords? Words?

Methodology and experiments

Datasets

- IAM Lines & Pages (no header)
- RIMES Lines & Pages

Explicit language modeling

- N-gram language models are built with the KenLM library
- Tested with different tokenization strategies

Results

- Relative change in Word Error Rate (WER) averaged on all datasets

• NorHand Lines & Paragraphs

Models

PyLaia

- CRNN with CTC decoder
- Trained on text-lines
- Document Attention Network (DAN)
 - CNN encoder with Transformer decoder
 - Trained on text-lines and on pages/paragraphs

- Character (6-gram)
- Subword (6-gram)
- Word (3-word)

Level	Tokenized text
Character	The _ numerical ly _ largest _ gr oup
Subword	The _ numer ic ally _ large st _ gro up
Word	The _ numerically _ largest _ group

• We combined PyLaia and DAN with n-gram models thanks to Torchaudio's ctc_decoder function

- Character LM: -20% WER
- Subword LM: -5% WER
- Word LM: +13% WER

None Character Subword Word

PyLaia Line DAN Line DAN Page

- Character n-gram models benefit PyLaia more than DAN:
 - 20% improvement for PyLaia
 - 8% improvement for DAN
- Language models impact speed: 10x slower for PyLaia, 1.4x for DAN

TL;DR

- Are n-gram models still useful with modern architectures? **Yes!**
- N-gram models still improve performance for HTR :
 - 20% reduction in WER for PyLaia
 - 8% reduction in WER for DAN
- Granularity matters:
 - Character n-gram models are great
 - Subword n-gram models are effective
 - Word n-gram models are
 - counterproductive
- Performance improves, but **at the cost** of a higher inference time

• Contact information: Solène Tarride (starride@teklia.com) https://teklia.com/ @_Teklia_