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Abstract

The current trend in object detection and localization is to learn predictions with high capacity deep neural networks trained
on a very large amount of annotated data and using a high amount of processing power. In this work, we particularly target
the detection of text in document images and we propose a new neural model which directly predicts object coordinates.
The particularity of our contribution lies in the local computations of predictions with a new form of local parameter sharing
which keeps the overall amount of trainable parameters low. Key components of the model are spatial 2D-LSTM recurrent
layers which convey contextual information between the regions of the image. We show that this model is more powerful than
the state of the art in applications where training data are not as abundant as in the classical configuration of natural images
and Imagenet/Pascal-VOC tasks. The proposed model also facilitates the detection of many objects in a single image and
can deal with inputs of variable sizes without resizing. To enhance the localization precision of the coordinate regressor, we
limit the amount of information produced by the local model components and propose two different regression strategies: (i)
separately predict lower-left and upper-right corners of each object bounding box, followed by combinatorial pairing; (ii) only
predict the left side of the objects and estimate the right position jointly with text recognition. These strategies lead to good
full-page text recognition results in heterogeneous documents. Experiments have been performed on a document analysis
task, the localization of the text lines in the Maurdor dataset.

Keywords Text line detection - Neural network - Recurrent - Regression - Local - Document analysis

1 Introduction

Object detection and localization in images is currently domi-
nated by approaches which first create proposals (hypothesis
bounding boxes) followed by feature extraction and pool-
ing on these boxes and classification, the latter steps being
usually performed by deep networks [2,14,15,35,36]. Very
recent methods also use deep networks for the proposal step
[22,35,36], sometimes sharing features between localization
and classification. Differences exist in the detailed architec-
tures in the way calculations are shared over layers, scales,
spatial regions, etc. (see Sect. 3 for a detailed analysis).
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Another criterion is the coupling between hypothesis cre-
ation and confirmation/classification. Earlier works create
thousands of hypotheses per image, sometimes using low-
level algorithms (e.g., R-CNN [15]), leaving the burden of
validation to a subsequent classifier. Current work tends to
create very few proposals per image, which satisfy a high
degree of “objectness”.

In this work, we focus on the localization step, targeting
cases where the existing methods tend to give weak results
(Fig. 1):

— the current trend is to design high capacity networks
trained on large amounts of training data either directly
or as a pre-training step. However, in some applications,
the image content is only very weakly correlated with the
data available in standard dataset like ImageNet/ILSVRC
[37]. In the case of small and medium amounts of training
data, fully automatic training of deep models remains a
challenge.

— we allow for the detection and localization of a relatively
high number of potentially small objects in an image,
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Fig.1 A fully convolutional model with high spatial parameter sharing
and fully trainable 2D-LSTM context layers learns to detect potentially
many objects from few examples and inputs of variable sizes

which is especially hard for existing methods [2]. Our
target application is the localization of text boxes.

— we focus on the precision of the localization, which
is important when detecting small objects and, in our
case, for the following text recognition step. Traditional
regression-based object detection models tend to have
issues with these small objects [35].

Similar to recent work, the proposed method localizes objects
by direct regression of (relative) coordinates. The main con-
tribution we claim is a new model which performs spatially
local computations, efficiently sharing parameters spatially.
The main challenge in this case is to allow the model to col-
lect features from local regions as well as globally pooled
features in order to be able to efficiently model the context.

Similar to models like YOLO [35] and single-shot detector
[22], our outputs are assigned to local regions of the image.
However, in contrast to these methods, each output is trained
to be able to predict objects in its support region, or outside.
Before each gradient update step, we globally match pre-
dictions and ground-truth objects. Each output of our model
directly sees only a limited region of the input image, which
keeps the overall number of trainable parameters low. How-
ever, outputs get additional information from outside regions
through context, which is collected using spatial 2D recur-
rent (LSTM) units. This spatial context layer proved to be a
key component of our model.

We propose the following contributions:

— A new fully convolutional model for object detection
using spatial 2D-LSTM layers for handling spatial con-
text with an objective of high spatial parameter sharing.

— The capability of predicting a large number of outputs,
made possible by the combination of highly local output
layers (1 x 1 convolutions) and preceding spatial LSTM
layers.

— The possibility of predicting outputs from input images
of variable size without resizing the input.

@ Springer

— Anapplication to document analysis with experiments on
the difficult and heterogeneous Maurdor dataset, which
shows that the model significantly outperforms the state
of the art in objects detection.

— The comparison of three regression strategies, namely (i)
detecting a full bounding box; (ii) detecting two corners
separately, followed by combinatorial pairing; and (iii)
detecting the left side of the bounding box, followed by
joint text recognition and detection of the right side (the
end of the bounding box).

The paper is organized as follows: the next section briefly
outlines related work. Section 3 discusses properties and
trade-offs of deep models related to convolutions, pooling
and subsampling, which will be related to our proposed
model. Based on these conclusions, a new model, recurrent
and local, is introduced in Sect. 4. Three object detection
strategies are explained in Sect. 5 to increase the precision
of the predictions. The training strategy of the networks is
detailed in Sect. 6 and experiments and results are shown in
Sect. 7.

2 Related work

Many text line detection techniques have been developed for
document analysis [11,21]. Most of them are using tradi-
tional image processing techniques. Rules are used to group
the connected components of the image [46], parts of these
connected components [38] or directly the pixels [39]. An
other approach is to successively split the image to segment
the text lines. It can be done by projection profiles [27], by
following a path between the lines [30] or by minimizing an
energy function [40]. These techniques can work well on the
task they were designed for but lack generalization on het-
erogeneous datasets. For these reasons, learning techniques
based on neural networks have been used for the classifica-
tion of the parts of an image as text or non-text [6,8] but still
need post-processing.

Similarly, earlier (pre-deep learning) work on object
recognition proceeded through matching of local features
[25] or by decomposing objects into mixtures of parts and
solving combinatorial problems [13]. Early work on deep
learning first extended the sliding window approach to deep
neural networks. To avoid testing a large number of posi-
tions and aspect ratios, R-CNN [15] introduced the concept
of object proposals, created by separate methods, followed by
convolutional networks to classify each proposal. The con-
cept was improved as Fast R-CNN [14] and Faster R-CNN
[36].

Erhan et al. proposed Multibox [10,42], which performs
direct regression of bounding box locations instead of rely-
ing on object proposals. After each forward pass, network
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outputs are assigned to target ground-truth boxes through a
matching algorithm. YOLO [35] and the single-shot detec-
tor [22] can be seen as variants of this concept, they will be
discussed in more detail in Sect. 3.

R-FCN [7] extend the Faster R-CNN approach using fully
convolutional networks and predicting fixed parts of the
object and [28] enables these parts to be deformable.

Some recent work strives to detect and localize objects
with pixel-wise precision, which somewhat blurs the bound-
aries between object detection and semantic segmentation
[33]. Methods which learn to segment without pixel-wise
ground truth have also been proposed [32]. Pixel-wise
segmentation is not needed in our application, where the
segmentation step is performed in a latter stage jointly with
recognition (recognition results will be given in the experi-
mental section).

Recurrent networks have been used for object detection in
early works [1], and context through spatial 2D-LSTM recur-
rent networks has been proposed as early asin [17]. However,
up to our knowledge, no method did use 2D-LSTM networks
for object localization. Similarly to our method, inside-
Outside-Nets [2] contain 2D spatial context layers collecting
information from 4 different directions. However, the hid-
den transitions of recurrent layers are set to identity, whereas
our model contains fully fledged trainable 2D-LSTM layers.
Moreover, localization is performed as ROI proposals with
selective search, the deep model being used only for clas-
sification and bounding box correction, whereas we do not
require a region proposal step. Our model directly performs
bounding box regression. Other recent work uses 2D recur-
rent networks for semantic segmentation [45].

CNNs have been used before for text detection, for
instance in [48], a fully convolutional network (FCN) is used
to classify each position of a salient map as text or non-text.

Some of these techniques have been used for the detection
of text in natural scene images using adaptations of Edge-
Boxes [20], Faster RCNN [26], SSD [23] or a YOLO-related
method [18]. Some of them [23,26] enable to handle ori-
ented text but only few objects are present in the images and,
to our knowledge, such approaches have not been applied to
document analysis tasks yet.

The problem of dataset sizes has been addressed before,
with strategies reaching from external memories [43] and
unsupervised learning, for instance by learning feature
extraction from physics [41].

3 Delving again into convolutions, pooling,
strides and spatial structure

Object detection and localization with convolutional deep
neural networks are governed by a set of implicit properties
and requirements, which we will try to lay out in the fol-

lowing lines. We will concentrate on the approach of direct
prediction of object locations (as opposed to creating propos-
als from additional and not-tightly connected methods). The
goal of this section is to discuss the effects and importance of
each part and the trade-offs to consider in these architectures,
which will lead us then to the formulation of the proposed
model.

The inputimage is passed through a series of convolutional
layers, each of which extracts features from the preceding
layer. Although not absolutely required, reducing the spa-
tial size of the features maps (often combined with pooling)
is frequently done in order to increase the receptive fields,
i.e., the relative size of the filters with respect to the inputs.
Choosing when to pool and to reduce can be critical, and
optimizations can lead to large decreases in the number of
trainable parameters [19]. An alternative to in-between-layer
pooling is changing the size of filters, especially as “a trou”
computation in order to keep the number of parameters low
[47].

At some point, a model needs to collect features from a
spatial support region. The way this pooling is distributed
over the different layers will decide important properties of
the model:

— Classical networks stop the sequence of convolutions
and reductions before the spatial size of the feature map
shrinks to 1x 1, keeping a spatial/geometrical structure in
the feature representation. Subsequent fully connected
layers then perform further feature extraction, implicit
pooling and decision taking.

The spatial structure of the feature map allows to per-
form controlled pooling from specific regions, but limits
the shift invariance of the representation.

— More recently, fully convolutional networks (FCN) per-

form convolutions and reductions+pooling until the spa-
tial size of the feature map is negligible, e.g., 1 x 1, with
a high feature dimension (1 x 1x4096 in the network for
semantic segmentation proposed in [24]). The goal here
is to fully translate geometry and appearance into fea-
tures and semantics.
Training can in principle lead to a spatial structuring of
the feature dimension, i.e., training can lead to a situation
where different elements of the feature layer correspond
to different regions in the input image. However, this is
not a constraint in the model and each activation of the
last feature layer can potentially contain features from
the full image.

Object detection and localization require certain properties,
like shift invariance, spatial precision and context collected
from the global scene. Several state-of-the-art models, Multi-
box [10], YOLO [35] and single-shot detector (SSD) [22]
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Fig. 2 Sketches of different ways to model bounding box regression
spatially (we do not show the correct numbers of layers and units).
a Multibox [10]; b Yolo [35] and SSD [22]; these three models pass
through a fully connected layer, which connects to a set of bounding box
outputs; architecture-wise, these three models are identical. The grid-

tackle this through an architecture sketched in Fig. 2a, b.! A
sequence of convolutions and reductions decrease the spa-
tial size of feature maps down to a small grid (7x7 for
[35], 9x9 for [22]). This map is then fully connected to a
1x1x4096 feature layer and again fully connected to a set
of outputs, each output predicting bounding box positions
and confidence scores (as well as class scores if required).
This approach has several advantages. Each of the outputs is
fully connected to previous layers and therefore potentially
has access to information from the full image. The last fea-
ture layer mixes spatial structure and feature dimensions in
a trainable way.

Although there is no principled difference in how the last
fully connected layer is actually implemented in the three
models, we display the output layer differently for Multibox
[10] (Fig. 2a) and for YOLO [35] or SSD [22] (Fig. 2b).
For the latter two, and also in accordance with the figures
of the respective papers, the outputs are shown as a spatial
grid (7x7 for [35], 9x9 for [22]). However, this structuring
is an interpretation, as the spatial structure of the grid is not
wired into the network architecture. It is justified through

1 The purpose of this figure is to show the strategy these models use to
translate geometry and resolution into features. In particular, we do not
show the actual numbers of layers and units. For SSD [22], we do not
show the way how this model handles multiple scales.
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like display of the outputs in b is due to training; ¢ our proposed model
is fully convolutional (no fully connected (= FC) layers) and keeps
spatial structure in the feature map. Global context is handled through
2D-recurrent LSTM networks, indicated through colored squares start-
ing in each corner of each feature map (see also Fig. 3)

the way training is performed in these models, in particular
on the way ground-truth outputs are matched (assigned) to
the network outputs. In the case of [35], this assignment is
purely spatial: outputs of a given cell are trained to provide
predictions of a spatial region corresponding to this cell (see
Sect. 6).

The main shortcoming of these models, which we will
address in the next section, lies in the fully connected fea-
ture and output layers at the end. We argue that they limit
invariance and contain too many parameters.

4 A local spatially recurrent model

Document analysis tasks, and especially the localization of
text lines in heterogeneous documents, are different from
the traditional scene text object detection tasks like Pascal-
VOC [12] or ImageNet/ILSVRC [37]. The main differences
are summarized in Table 1. Namely, the Maurdor dataset [5]
is much smaller than the scene text object datasets and the
number of object to detect is higher, both when considering
the mean and the maximum number of objects per image. On
the contrary, there is only one class of object, the text lines,
which lead to a probably lower complexity of the task.

In order to deal with these specificities, we propose a
new model designed to detect a large number of (potentially)
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Table 1 Comparison of

statistics for Pascal-VOC [12] Pascal-VOC 2012 ILSRVC 2014 Maurdor

an('i ILSRVC_ [37] scene text Number of images 17,125 544,546 3995

object detection datasets and .

Maurdor [5] document text line Number of objects 40,138 615,299 135,834

object detection dataset Mean number of objects per image 2.34 1.13 34.00
Maximum number of object per image 56 17 567
Mean object area 0.1529 0.3833 0.0050
Mean horizontal object size 0.3406 0.6033 0.2327
Mean vertical object size 0.449 0.6353 0.0216
Number of classes 20 200 1

small objects from a low number of training examples, i.e.,
with a model with a small number of trainable parameters.
We achieve this with two techniques:

A. Feature sharing—we predict different object locations
from local features only. More precisely, the output layer of
a single object bounding box is not fully connected to the pre-
vious layer, as illustrated in Fig. 2c. Outputs are connected
through 1 x 1 convolutions, i.e., each element (7, j) of the last
feature map is connected to its own set of K output modules,
each module consisting of relative x and y positions, width,
and height and a confidence score used to confirm the pres-
ence of an object at the predicted position. The objectives
here are twofold:

— Todrastically reduce the number of parameters in the out-
put layer by avoiding parameter hungry fully connected
layers.

— To share parameters between locations in the image,
increasing shift invariance and significantly reducing the
requirements for data augmentation.

Indeed, the number of input neurons of the fully connected
layer is divided by the size of the last feature map as we
use a vector of this feature map and not all of it. This is
enabled by the fact that we only ask these features to carry
the relevant information about a part of the image, and not
the whole image. Moreover, the number of output neurons
of this fully connected layer can also be divided because we
now want to be able to detect the maximum number of objects
that can be present in a small part of the image and not the
maximum number of objects that can be present in the whole
image. Most of our network parameters were in this last fully
connected layer and reducing it that way enables our network
to be trained with a lower amount of data.

Sharing the parameters between the locations means that
the same parameters will be responsible to predict several
objects, for example both a line at the top of the page and
a line at the bottom of the page. It means that more object
examples will be seen by a given parameter which will reduce
the problem of data scarcity.

B. Spatial recurrent context layers—the drawback of local
parameter sharing is twofold: (i) objects may be larger than
the receptive field of each output, and (ii)) we may lose
valuable context information from the full input image. We
address both these concerns through context layers consist-
ing of Multi-Dimensional Long-Short term memory models
[17], which are inserted between the convolutional layers.
These MD-LSTM layers aim at recovering the context infor-
mation from the area outside of the receptive field.

Figure 3 illustrates how the context layers are organized.
Each convolutional layer is followed by 4 different paral-
lel 2D-LSTM layers, which propagate information over the
feature map elements in 4 different diagonal directions, start-
ing at the 4 edges. For each of the directions, each element
gets recurrent connections from 2 different neighboring sites.
The outputs of the 4 directions are summed—concatenation
would have been another possibility, albeit with a drasti-
cally higher amount of parameters. No pooling is performed
between the convolutions. Spatial resolution is reduced
through convolutions with strides between 2 and 4 (see
Table 5).

The network outputs are computed from the last hidden
layer as a regression of the normalized relative bounding box
locations. In particular, the absolute location of each pre-
dicted object is calculated by multiplying the network output
with a width parameter vector A and adding an offset vector
A, whose values depend on the architecture of the network.
A corresponds to the sizes of the associated convolutional
receptive fields while A corresponds to the position of these
receptive fields in the whole page image.

More formally, if /; ; i is the location prediction for the
k' object prediction of element (i, j) of the last feature map,
then [; ; x is a vector of size P (where P is the number of
coordinates predicted per object. For a box, P = 4).

Lijk = {lfj,k}, p=1...P. (1
And it is computed as follows:

lijx=ATo (Ugh; j +cx) +[i—1 j—117A 2)

@ Springer
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(a) (b)

Fig.3 aOne of the conv+LSTM modules as shown in Fig. 2; b the mod-
ule is composed of a convolutional layer and four-directional 2D-LSTM
layers in parallel, whose output feature maps are then element-wise
added (not concatenated); ¢ a single-directional 2D-LSTM, shown for

where h is the last hidden layer, o (-) is the element-wise sig-
moid function and the weights Uy and biases cj are trainable
parameters. Note that, since the outputs are 1x1 convo-
lutions, the parameters {Ug, cx} are shared over locations
(i, j). However, each object predictor k features its own set
of parameters.

Flexibilty—another significant advantage of the proposed
local method is that we can handle images of varying sizes
without performing any resizing or cropping. Decreasing or
increasing the size of the input image, or changing its aspect
ratio, will change the size of the post-convolutional feature
maps accordingly. This will change the number of network
outputs, i.e., object predictions.

5 Optimizing precision: regression strategies

As illustrated in Table 1, the objects we want to detect in typ-
ical document analysis problems are smaller than objects in
traditional scene object detection tasks, especially in the ver-
tical direction. This means that the precision of the position
predictions with respect to the image size is more important;
a small error can cause the object to be missed. Moreover,
our final objective is to recognize the text present in the text
lines. Text recognition is very sensitive to localization errors,
a horizontal error means that some letters will not be present
in the image and thus will be lost for recognition. On the
other hand, a vertical error means that the bottom or the top
of the letters can be lost, which could make all the letters of
the text line unrecognizable. For these reasons, localization
precision is very important in the text line localization task
our work is aimed at.
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left-to-right/bottom-to-top direction. Each element gets recurrent con-
nections from two different predecessors. Only a single unit is shown per
site; RNN notation is used (memory cell/gates are not shown). In con-
trast to [2], we use real LSTM models with trainable transition matrices

Table2 Comparison of the F-measure scores for the detection of lower-
left corners with respect to a given acceptance zone size for networks
trained to detect lower-left corners, left sides or boxes

Acceptance zone size  0.003 (%) 0.01 (%) 0.03 (%) 0.1 (%)

Lower-left network, 10.7 57.4 85.7 91.7
P=2

Left-sides network, 11.2 58.4 87.0 92.6
P=3

Boxes network, 6.8 45.0 82.8 89.9
P=4

Acceptance zones are given as a proportion of page width

5.1 Strategy 1: bounding box regression

The first strategy is the obvious strategy employed by
standard deep models in object detection and recognition:
regression of the full bounding box coordinates (upper left
corner and lower-right corner; or, alternatively, one corner
plus width and height). This strategy is not optimal in the
case of our local model with shared output regression. In
particular, the ending of a text line is often outside of the
convolutional receptive fields and predicting precisely this
position is a difficult problem, which is entirely put as a bur-
den on the recurrent layers. These context layers can decrease
the problem but cannot completely solve it.

The problem can be confirmed experimentally. Table 2
shows that the lower-left corners of the text line bounding
boxes are more precisely located when the network is trained
to detect and localize only these lower-left corners (when
P = 2 in Eq. 1) than when the network is trained to predict
also the width and the height of the bounding boxes (when
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Fig. 4 Illustration of the point pairing process. Three different neural
networks are used for, respectively, the detection of the lower-left cor-
ners of the text line bounding boxes, the detection of the upper-right
corners, and for the computation of the pairing likelihoods

P = 4 in Eq. 1). In the following, we will propose two
alternative strategies which address exactly this problem.

5.2 Strategy 2: detecting lower-left and upper-right
points + pairing

The second strategy is illustrated in Fig. 4. Two different
networks are responsible for, respectively, predicting the
lower-left corners and the upper-right corners of the bound-
ing boxes. These networks share the same architecture but
not their trainable parameters. Each regressed entity/point
fully falls into the receptive field of the network, easing the
burden on the regressor.

The predicted lower-left corners and upper-right corners
need to be paired to form the desired bounding box predic-
tions. This pairing is performed by minimizing the following
energy function with respect to discrete variable z = {z;;},
which indicates that that lower-left corner /j; (i) is paired with
upper-right corner [, ().

t = argrnzinz Zz,-,-D(lu(i), Lur ()
[

st Vi zijef0.1}, Vi) z;e{0.1) (3)
i j

This constraint satisfaction problem can be solved using the
Hungarian algorithm [29], which ensures that a given left
corner candidate /;;(7) is not paired with several right corner
candidates [, (j) and vice versa.

The distance function D(., .) is responsible for evaluating
if a left and a right corner can be paired, or in other words, to
predict if the box formed by these two corners is likely to be a
text line bounding box. We implement this distance as a third

Table 3 Comparison of the F-measure scores for the detection of the
triplet of left-side positions with respect to a given acceptance zone size
for networks trained to detect left sides or boxes

Acceptance zone size  0.003 (%) 0.01 (%) 0.03 (%) 0.1 (%)

Left-sides network, 4.2 47.2 84.8 92.4
P=3

Boxes network, 3.4 24.6 71.4 89.7
P=4

Acceptance zones are given as a proportion of page width

convolutional neural network made of 6 convolutional layers
followed by a max-pooling and trained on a large number of
images of pairs of left and right corners, some of which are
part of the same text box, and some of which are not. The
network takes as input the image inside the box formed by
the two candidate points and it outputs a classification result
of this being a line or not. The posterior probability of this
decision (the soft-max output) corresponds to distance D.

5.3 Strategy 3: detecting the left sides + text
recognition

Using this corner detection and pairing technique can help
to improve the precision of the results. But the system is
more complicated because three different networks have to
be trained only for the text line detection. Moreover, the pro-
cessing time is higher because the detection is done twice
and because the pairing distance network has to be run for
each couple of lower-left and upper-right hypothesis corners.
Finally, the pairing step itself is responsible for some of the
failures.

Further experiments show that only the detection of the
width of the text lines is damaging the precision of the predic-
tion localizations. Detecting the height does not encounter the
same issue. This is illustrated in Tables 2 and 3. This is prob-
ably due to the fact that the height of the text lines are often
smaller and, consequently, lie inside the receptive fields.

A second alternative strategy, which avoids the combina-
torial pairing process, involves detecting the lower-left corner
of each text entity plus the height of the text box, but not its
width. This is motivated by the fact, that the full-text height
is often within the receptive field of each local predictor, but
not the full width of the text box. Instead of detecting the text
width separately, it is predicted jointly with the following
text recognition step. In other words, we jointly recognize
the text as well as where it ends.

The text recognizer is given as input an image with a left
side defined by the localizer and a right side being the corre-
sponding right border of the page image. It means that other
text objects can be included in this right added part, the text
recognizer is retrained in order to learn to ignore them. This
process is illustrated in Fig. 5 and justified by the results

@ Springer
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Fig.5 Description of the left-side localization technique. a Detection of
the left-side position triplet objects. b Extraction of corresponding text
lines. ¢ Recognition of the text lines content with a recognizer trained
to ignore text from other lines. The extra end-of-line characters (EOL)
helps this training

Table 4 Text recognition Word Error Rates (WER) for networks
trained/evaluated on reference boxes or box defined only by their left
sides and extended to the right border of the page

Evaluated with
left sides only

Evaluated on
reference boxes

(%) (%)
Trained on reference boxes 9.0 46.7
Trained with left sides only 10.6 9.8

shown in Table 4 which show that a text recognizer network
trained and evaluated on text boxes defined only by their
left sides has a word error rate (9.8%) close to the error rate
(9.0%) of the reference network trained and evaluated on the
regular reference line bounding box images.

6 Training
The models are trained with stochastic gradient descent

(SGD) using mini-batches of size 8 and dropout for regular-
ization. During training, object predictors (network outputs)
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need to be matched to targets, i.e., to ground-truth object posi-
tions. Similar to the strategy in MultiBox [10], this is done
globally over the entire image, which allows each object pre-
dictor to respond to any location in an image.

We denote by M the number of predicted objects, given
as M = [ xJ x K, with I and J being the width and the
height of the last feature map and K the number of predictors
per feature map location; we denote by N the number of
reference objects in the image. Matching is a combinatorial
problem over the matching matrix X, where X,,;, = 1 when
hypothesis m is matched to target n, and O otherwise. For
each forward-backward pass for each image, X is estimated
minimizing the following cost function:

N M
Cost = Z Z Xnm (05 Nl — tn”Z - log(cm))

n=0m=0

— (1 = Xym) log(1 — c) 4

where /,, is a vector of size P corresponding to a predicted
location, ¢, is the corresponding confidence, and ¢, is a target
object location which is of size P as well. The first term,
euclidian, handles location alignment, while the second and
third terms, logarithmic, favor high confidence objects. « is
a weight between both.

Equation (4) is minimized subject to constraints, namely
that each target object is matched to at most one hypothesis
object and vice versa. This is a well known bi-partite graph
matching problem, which can be solved with the Hungarian
algorithm [29]. Please note, that this detection/ground-truth
matching process is different from left/right point pairing
process described in Sect. 4, although both are solved using
the Hungarian algorithm.

Equation (4) gives the loss function used in the SGD
parameter updates. However, we prefer to set different val-
ues of « for gradient updates and for matching. We found it
important to increase « for the matching in order to help the
network to use more diverse outputs.

As mentioned earlier, our matching strategy is similar to
the one described in MultiBox [10] and has the same global
property brought by the confidence term (albeit applied to
local outputs, compared to the global outputs in [10]). On
the other hand, in SSD [22] and YOLO [35], matching is
done locally, i.e., predictors are matched to targets falling into
spatial regions they are associated with. This is the reason for
the spatial interpretation of the output grid shown in Fig. 2.
Moreover, YOLO matches only one target location with each
spatial cell, which leads to non-matched targets in the case of
several objects with bounding box centers in the same cell. In
our target application, where a large number of objects may
be present, a large number of objects will not be matched to
any predictor during training, as can be seen in the example
in Fig. 6.
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Fig.6 YOLO matches target objects according to the spatial region in
which they fall in the image, which leaves many targets unassigned
(shown in blue). In applications with many objects, this makes the
method non-applicable (color figure online)

In SSD and MultiBox, the matching process is restricted
to a fixed dictionary of anchor locations obtained arbitrarily
[22] or with clustering [10], which helps the network to create
outputs specialized to regions in the image. This was proved
unnecessary and even counter-productive in our case, where
predictors share parameters spatially.

7 Experimental results

We tested the proposed model and the baselines on the
publicly available Maurdor dataset [5]. This highly het-
erogeneous dataset is composed of 8773 document images
(train:6592; valid:1110; test:1071) in mixed French, English
and Arabic text, both handwritten and printed.

The dataset is annotated at paragraph level. For this reason,
we use the technique detailed in [4] to get annotation at line
level and we keep only the pages where we are confident that
the automatic line position generation has worked well. We
obtain a restricted dataset containing 3995 training pages,

697 validation pages and 616 test pages that are used for
training, validation and test for the evaluation of intersection
over union and DetEval metrics.

For the Bag of Word metric, we evaluate on the 265 pages
fully in English and on the 507 pages fully in French of the full
Maurdor test set in order to avoid the language classification
task.

7.1 Metrics

We evaluate the performance of our method using three dif-
ferent metrics:

Intersection over union—IoU is a commonly used metric
in object detection and image segmentation. It is given as
the ratio of the intersection and the union of reference and
hypothesis objects. Reference objects and hypothesis objects
are matched by thresholding their IoU score. In most fre-
quent versions, only one hypothesis can be associated with a
reference box, the others are considered as error/insertions.
Alternatively to reporting IoU directly, after thresholding
IoU, an F-measure can be computed from Precision and
Recall.

DetEval—DetEval [44] is the metric chosen for the ICDAR
robust reading series of competitions. Its main advantage is
that it allows many-to-many matchings between reference
objects and hypothesis objects, which is important in appli-
cations where fragmentation of objects should be allowed
(and eventually slightly punished), which is the case in text
localization. Objects are assigned by thresholding overlap,
and Precisions, Recall and F-measure are reported.

Bag-of-words recognition error—BoW is a goal-
oriented method described in [34], which measures the per-
formance of a subsequent text recognition module. The
objective is to avoid the need of judging the geometrical pre-
cision of the result and to directly evaluate the performance
of the goal of any localization method. In the case of the
target application this is the subsequent recognizer.

We use the recognition model from [31], which is based on
deep convolutional networks and spatial/sequence modeling
with 2D-LSTM layers. Assigning character labels to network
outputs is performed with the Connectionist Temporal Clas-
sification framework [16]. Recent follow-up work solves this
problem with attention-based mechanisms [3], this will be
investigated in future work. The recognizer is trained on both
handwritten and printed text lines, separately on English and
French text. We apply them on crops of localized bounding
boxes. The Bag of Word metric, on the contrary to metrics
based on the Levenshtein distance enables to avoid an align-
ment that can be ambiguous at page level. Word insertion
and deletions are computed at page level and F-measure is
reported.
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7.2 Baselines

Traditional text segmentation methods—For comparison,
we used two techniques based on image processing (w/o
machine learning) for document text line segmentation. Shi
et al. [39] use steerable directional filters to create an adap-
tive local connectivity map. Line locations are given by the
positions of the connected components extracted from the
binarization of this connectivity map. These positions are
refined with heuristic-based post-processing. The method
proposed by Nicolaou et al. [30] follows the whitest and
blackest paths in a blurred image to find lines and interlines.

Machine Learning-based methods: Yolo and MultiBox—
For YOLO, we used two classes for the object classification
part of the model, handwritten text lines and printed text lines.
It helped the model to learn better than with only one class.

Both systems were tested in two different configurations:
the original architecture tuned for large-scale image recog-
nition, and an architecture which we optimized for our task
on the validation set. In particular, the size of the filters was
adapted to the shape of the objects. Hyper-parameter tuning
led in both cases to architectures with heavily reduced num-
bers of layers and less units per layer. We also optimized
learning rates and minibatch sizes.

7.3 Architectures

The network architecture of the proposed model has been
tuned to correspond to our task. The found hyper-parameters
are detailed in Table 5. The width and height of the feature
maps are given for illustration but it can of course vary. In par-
ticular, the aspect ratio of the image can vary. We would like
to stress again that the number of parameters is independent
of the actual size of the input image.

The inputs of our network are raw gray-scaled images
with width normalization. The use of color images was not
improving the results on our task.

Note that the number of weights in our last layer, the posi-
tion prediction layer, is rather small : 3,700. To be able to
predict the same number of objects, with the same number
of input features, MultiBox [10] and Yolo [35] would have
needed 15,688,200 parameters.

For training, we used a learning rate of 10~* and mini-
batches of size 8. Dropout with 0.5 probability is applied
after each 2D-LSTM layer. The o parameter in Eq. (4) is set
to 1000 for matching and to 100 for weight updates during
SGD.

We experimentally found that resolution reduction bet-
ween layers works better using strides > 1 of the convolu-
tional layers instead of max-pooling. This can be explained
by our need for precision, while max-pooling is known to
lead to shift invariance.
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Table 5 Network architecture/hyper-parameters

Layer Filter Stride Size of the Number of
size feature maps parameters

Input - - 1 x (598 x 838)

Cl 4 x4 3x3 12 x (199 x 279) 204

LSTM1 - - “r 8880

Cc2 4x3 3x2 16 x (66 x 139) 2320

LSTM2 - - “r 15,680

C3 6x3 4x2 24 x (16 x 69) 6936

LSTM3 - - “r 35,040

C4 4x3 3x2 30 x (5 x 34) 8670

LSTM4 - - “r 54,600

C5 3x2 2x1 36 x (2 x 33) 6516

Output 1x1 I1x1 5x 20 x (2 x33) 3700

The input and feature map sizes are an illustrative example. The number
of parameters does NOT depend on the size of the input image

Table 6 Detection performance: F-measure with various thresholds(T)
on IoU

Method F-measure
T =03 (%) T=05%) T=0.7(%)
Shi et al. [39] 40.7 31.1 21.1
Nicolaou et al. [30] 36.1 26.3 15.9
Multibox [10] 11.3 2.1 0.2
Multibox [10] 48.7 23.0 5.2
(optimized)

Boxes, no LSTMs 49.9 23.7 5.3
Boxes 73.8 43.6 14.1
Points and pairing 69.1 45.1 18.2

On the restricted Maurdor test set (616 pages)

7.4 Results and discussion

Localization results on the restricted Maurdor test set, for
our box detection and our points detection plus pairing sys-
tem alongside with baselines and a reference object detection
method, are shown with the IToU metric in Table 6 and with the
DetEval metric in Table 7. The left-side detection method is
not shown in these tables because it does not give the geomet-
ric position of the boxes explicitly. Text recognition results
(on text objects localized by our three methods), evaluated
with the Bag of Word metric, are shown in Table 8, respec-
tively, for pages fully in French and fully in English of the
whole Maurdor test set.

For the IoU metric, results are given in Table 6. We report
F-measure for different thresholds on IoU, i.e., for different
localization quality requirements. The image-based tech-
niques Shi et al. [39] and Nicolaou et al. [30] perform poorly
when the threshold is low, i.e., when we are interested in the
ability of the system to detect all the boxes regardless of the
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Table 7 Detection performance with DetEval [44]

Method Recall (%) Precision (%) F-Meas. (%)
Shi et al. [39] 35.1 384 36.7
Nicolaou et al. [30] 46.7 39.6 42.9
Multibox [10] 4.2 10.0 6.0
Multibox [10] 28.8 52.3 31.1
(optimized)
Boxes, no LSTMs 28.6 52.4 31.1
Boxes 51.2 61.4 55.9
Points and pairing 54.2 58.6 56.3

On the restricted Maurdor test set (616 pages)

Table 8 Detection and recognition performance: word recognition F-
measure in BOW mode on the full English or French Maurdor test set

Method French (507 English (265
pages) (%) pages) (%)
Shi et al. [39] 48.6 30.4
Nicolaou et al. [30] 65.3 50.0
Multibox [10] 27.2 14.8
Multibox [10] (optimized) 324 36.2
Boxes, no LSTMs 57.8 56.9
Boxes 71.2 71.1
Points and Pairing 71.7 72.3
Left sides 4 joint recognition 79.9 79.1

exact location. They suffer from low general recall. How-
ever, they are relatively precise. F-measure drops less than
the learning-based methods when the precision requirements
are increased by increasing the threshold on IoU. This can be
explained by the nature of these algorithms, which proceed
by binarization of the input images. In the normal operating
range of these algorithm, when the segmentation steps work
out well, precision is almost guaranteed to be high. However,
once images don’t fall into the situations the algorithms have
been tuned for, performance breaks down.

On the other hand, methods based on direct regression as
MultiBox [10] and our proposed method are more robust and
achieve better general recall, an advantage which is bought
with a slight drop in precision. Our proposed methods give
the best results for realistic thresholds.

We can also see in Table 6 that the point detection and
pairing of left and right corners method is better than the
box detection method when we use a high threshold value.
It confirms that this method is better when preciseness is
needed. On the contrary, it is worse for a small IoU threshold
of 0.3. That can be due to the errors in the pairing process.

The DetEval metric results shown in Table 7 confirm the
results from the intersection over union metric.

From the application perspective, namely the full-page
text recognition in documents, Table 8 shows that the pro-
posed methods deliver good results with over 70% F-measure
Bag of Word score for the box detection method and nearly
80% for the left-side detection system, on both French and
English. It outperforms all the other methods. This can be
explained by its high recall, while the similar precision of
image-based methods is not an advantage since a recognizer
can compensate for it, up to a certain limit.

In Tables 6, 7 and 8, results for the direct detection
of boxes are given with and without recurrences in the
model. It stressed the importance of adding 2D-LSTM layers
to recover information as it significantly improves perfor-
mances for all the metrics. The power of the 2D-LSTM layers
can also be shown in Fig. 7, which gives some example detec-
tions of the box detection system. Figure 7a, ¢ shows that the
model is capable of detecting objects which are larger than
the receptive fields of the individual bounding box predic-
tors. This is made possible through the context information
gathered by the LSTM layers. Figure 7c, f shows that the
system is capable of detecting and locating a large number
of small objects.

Figure 8 shows the results of the left-side detection model
and the results can be compared to those of Fig. 7. We can
see that, especially when small objects have to be detected
as in Fig. 7c, f, the preciseness of the position predictions
is improved with this left-side detection. Good results are
shown on a very heterogeneous set of documents, including
forms, letters, maps or newspaper pages. Both for French and
English, both for Printed and Handwritten texts.

Multibox [10] is significantly outperformed by our
method, even if we optimize its hyper-parameters (on the
validation set). We attribute this to the fact, that the output
layers are not shared. The model needs to express similar
prediction behavior for each output, thus relearn the same
strategies several times.

YOLO [35] proved to be impossible to apply to this kind
of problem, at least in its current shape. As reported by the
authors, the system gives excellent results on the tasks it
has been designed for. However, despite extensive tuning of
its hyper-parameters, we were not able to reach satisfying
results, although we worked with two different implementa-
tions: the original implementation of the authors, as well as
our own implementation. We did identify the problem, how-
ever. YOLO has been designed for a small number of objects,
with a predictor/target matching algorithm adapted to these
settings (see also Sect. 6). As mentioned, only one target
can be associated with each spatial cell, which is a harmless
restriction for traditional object detection tasks. However,
this is a real problem in our case, as shown in the example
image in Fig. 6. A large part of the ground-truth objects in
most figures will not be assigned to any predictor, and not
trained for. Not only are these boxes missing at training, net-
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Fig.7 Samples of results obtained with the box detection method on images of the Maurdor test set. The actual inputs are shown

work outputs predicting their locations will be punished at
the next parameter update, further hurting performance and
hindering the networks from converging properly.

7.5 Implementation

No deep learning framework was used for the implemen-
tation of the proposed method, since, until recently and
the Theano version from Doetsch et al. [9], no 2D-LSTMs
implementation was, up to our knowledge, yet existing in

@ Springer

Tensorflow, Torch, Theano or Caffe. The system has been
implemented using our in-house framework implemented in
C++, including the SGD optimizer and dropout. For this rea-
son also, the model has been trained on CPUs.

The three detection systems that we propose in this paper
and that, respectively, detect points, left sides or boxes have
approximately the same computing time because most of the
time is spent on the first layers of the network, because our
last layer is only locally connected and because the size of
the last feature map is small.
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Fig.8 Samples of results obtained with the left-side detection method on images of the Maurdor test set. The actual inputs are shown

For an image of size 598 x 838, our model took a mean
decoding time of 245 ms (64 ms without recurrent lay-
ers) while the Multibox network (initial architecture) took
453 ms. All performances are CPU only on Intel Xeon ES5-
2640-v4 with 64 GB of RAM.

For YOLO we used two different implementations. We
implemented and trained our own implementation in Ten-
sorflow, and we also used the official source code published
by the authors.?

2 http://pjreddie.com/darknet/yolo.

8 Conclusion

We presented a new fully convolutional model for the detec-
tion and localization of a potentially large number of objects
in images. To optimize invariance and in order to limit the
number of trainable parameters, we shared parameters of the
output layer over spatial blocks of the image, implementing
the output layer as 1x1 convolution. To deal with objects
which are larger than the receptive fields, and in order to
allow the model to collect features from the global context,
we added 2D-LSTM layers between the convolutional layers.
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We proposed three different strategies based on the detection
of boxes, corners or left sides in order to improve the preci-
sion of the detections. We compared the proposed models to
the state of the art in object detection, in particular to Multi-
box [10] and YOLO [35] that does not converge on our data.
We measured detection performance and word recognition
performance of a subsequent text recognition system. Our
experiments showed, that the proposed model significantly
outperforms both methods, even if their hyper-parameters are
optimized for the targeted configurations. Good results have
been obtained on a broad range of documents.
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