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Abstract—Handwritten Text Recognition (HTR) is an open
problem at the intersection of Computer Vision and Natural
Language Processing. The main challenges, when dealing with
historical manuscripts, are due to the preservation of the paper
support, the variability of the handwriting – even of the same
author over a wide time-span – and the scarcity of data from
ancient, poorly represented languages. With the aim of fostering
the research on this topic, in this paper we present the Ludovico
Antonio Muratori (LAM) dataset, a large line-level HTR dataset
of Italian ancient manuscripts edited by a single author over
60 years. The dataset comes in two configurations: a basic
splitting and a date-based splitting which takes into account the
age of the author. The first setting is intended to study HTR
on ancient documents in Italian, while the second focuses on
the ability of HTR systems to recognize text written by the
same writer in time periods for which training data are not
available. For both configurations, we analyze quantitative and
qualitative characteristics, also with respect to other line-level
HTR benchmarks, and present the recognition performance of
state-of-the-art HTR architectures. The dataset is available for
download at https://aimagelab.ing.unimore.it/go/lam.

I. INTRODUCTION

Handwritten Text Recognition (HTR) has been studied for
decades [1], [2], [3], thanks to its importance in terms of
practical applications (ranging from public administration to
industrial processes automation and digital humanities) and
for its multimodal and sequential nature, that is common
to other pattern recognition tasks. Despite the encouraging
results achieved by the recent literature, and especially by deep
learning-based models [4], [5], [6], [7], HTR is still far from
being considered a solved task.

When performing HTR on historical manuscripts [8], [9],
[10], [11], [12], [13], there are additional challenges which
need to be taken into account, which are both visual and
linguistic issues. From the visual point of view, the digitized
images of an historical manuscript exhibit several artifacts:
both the paper support and the ink can be deteriorated, and
there can be stains, scratches, bleed-through or faded ink.
Further, the language used is typically peculiar to the historic
period and geographical area in which the manuscript was
edited. This often prevents exploiting a pre-trained language
model in modern English language and represents a challenge
from the textual and linguistic point of view. Designing ef-
fective strategies for the challenges mentioned above requires
rich data collections, manually annotated.

mi costò la posta quasi un testone, e

si rubbano i denari. L'ultimo ordinario

nomia, e di far più il poltrone in iscri-

carmi da quì avanti ad un poco d’eco-

perciò feci il santissimo voto d'appli-

Il peggio si è che oltre il tempo mi

ver lettere, altrim:i io farò il Segretario,

Transcriptions

The worst part is that in addition to time, I'm 
losing money. The last weekly correspondence 
cost me almost a testone1 in mail, and thus I 
have made a solemn vow to commit myself 
from here on to economize a little and be 
lazier in writing letters, or otherwise, I will end 
up being a Secretary (…)

1 an ancient silver coin

Fig. 1. The LAM dataset features lines from letters by the Italian historian
L. A. Muratori. To the best of our knowledge, it is the largest dataset for
line-level HTR.

In this paper we contribute to the research on handwriting
recognition by presenting a novel and large dataset for HTR
on historical manuscripts. The dataset is obtained from letters
handwritten by the Italian historian Ludovico Antonio Mura-
tori (1672-1750), which are preserved at the Estense Library
of Modena (Italy). We selected letters written personally by
Muratori (discarding those written by his collaborators, thanks
to a precise evaluation by experts), and entirely in ancient
Italian1. While all letters have been written by a single author,
they cover a large time-span of around 60 years – during which
the author’s handwriting and paper support varied. This makes
the dataset suitable for dealing with the change of handwriting
style over time, in addition to being a pure HTR dataset. The
annotation of the dataset has been performed manually, and
it has been double-checked by two experts, who provided
diplomatic transcriptions at line-level. This level of annotation
granularity has been chosen as it is a good trade-off between
word-level and paragraph-level in terms of required time, cost,
and amount of supervision and because it is common in HTR
research. Overall, the proposed dataset contains 25,823 lines,
which, to the best of our knowledge, makes it the largest line-
level HTR dataset to date.

In the reminder of the paper, we present the LAM dataset,

1Muratori, indeed, wrote parts of letters in Spanish, French, and Latin,
depending on the correspondent.
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named after the initials of Ludovico Antonio Muratori, and
provide an overview of its main features by comparing it
with existing proposals. Moreover, we perform a quantitative
analysis of the performance achieved by different HTR ap-
proaches, including both state-of-the-art models and tools, on
the dataset with the aim of providing the community with
baselines and insights for developing novel architectures for
HTR on historical data.

II. RELATED WORK

Depending on the choice of the textual unit, HTR can
be performed at different granularity levels, ranging from
character-level [14], [15] (which is particularly suited for
idiomatic languages) to page-level [16], [17], [18], [19], [20].
Line-level HTR is a popular trade-off and one of the most
studied variants, especially for non-idiomatic languages. In
fact, line-level HTR not only is a standalone variant of the
task, but is also often integrated in paragraph-level or page-
level HTR systems [6], [16], [17]. For this reason, the LAM
dataset has been designed to fit a line-level protocol.

The first approaches to HTR entailed the use of Hid-
den Markov Models (HMMs), in combination with Gaussian
Mixture Models or fully-connected networks for representing
the visual input, and n-gram based language models for
predicting the textual output [21], [22]. In following works,
the visual input representation has been performed by using
Multi-Dimensional Long Short-Term Memory networks (MD-
LSTMs), and the Connectionist Temporal Classifier (CTC)
decoding strategy has been introduced to produce the tran-
scription [18], [23], [24], as proposed in [3]. Alternatively to
MD-LSTMs, CNNs can be used, in combination with one-
dimensional LSTMs, to encode the text image [4], [5]. This
strategy later became a popular choice [25], [26], [27], [28],
[29], [30] since it allows reaching comparable or superior
results to MD-LSTM-based approaches, while being faster
to train. Other approaches have also been investigated to
avoid the usage of Recurrent Neural Networks (RNNs). For
example, in [31], it is proposed an hybrid approach combining
convolutional layers and time-delay neural layers [32] for
input representation, with an HMM for output prediction.
Further, in [6], [33], Fully Convolutional Networks (FCNs)
are proposed for HTR. To simulate the dependency modeling
provided by LSTM cells, FCN are combined with GateBlocks
layers [34], which implement a selecting mechanism similar
to that of LSTM cells. Each gate is made of Depth-wise
Separable Convolutions [35] to reduce the number of param-
eters and speed up the training process. A recent research
line has proposed to apply the sequence-to-sequence paradigm
to HTR [36], [37], where the text image is encoded via
convolutional and recurrent layers, and the transcription is
generated by a RNN-based decoder. As training objective,
the CTC loss commonly used in HTR can be combined with
the cross-entropy loss. As a special case of the sequence-to-
sequence paradigm, some works apply Transformers [38] as
encoders or decoders [39], [40], motivated by the success of
such architecture in machine translation and language under-

TABLE I
CHARACTERISTICS OF LINE-LEVEL BENCHMARK DATASETS.

Lines Lexicon Period Language Authors

IAM [47] 10,373 9,749 Modern English Many
RIMES [48] 12,111 8,760 Modern French Many

Washington[49] 656 1,471 1755 English Two
Saint Gall [50] 1,410 5,436 ca 890-900 Latin One
Esp. Index [51] 1,563 1,725 1491-1495 Catalan One
Leopardi [12] 2,459 5,067 1818-1832 Italian One
Parzival [49] 4,477 4,934 ca 1265-1300 German Two
Esp. Licenses [51] 5,447 3,465 1616-1619 Catalan One
ICFHR14 [52] 11,473 9,716 ca 1760-1832 English Many
ICFHR16 [53] 10,550 8,120 1470-1805 German Many
ICFHR18 [54] 14,803 23,198 Mixed1 German, Italian Many
Rodrigo [55] 20,357 17,300 1545 Spanish One
Germana [56] 20,529 27,100 1891 Spanish2 One

LAM (Ours) 25,823 23,428 1691-1750 Italian One

1 - Both Medieval and Modern.
2 - A small number of lines are in different languages.

standings and other vision-and-language tasks [41], [42], [43],
[44]. In HTR, this strategy is effective when sufficient training
data is available. For this reason, some works employ synthetic
data during a pre-training stage [7], [45], [46]. Finally, to
increase performance, many approaches integrate an explicit
language model. This strategy is as effective as the language
in the dataset is regular and well-represented, which is not
often the case for historical datasets.

Existing Benchmark Datasets. Designing and developing
effective HTR solutions requires the availability of large data
collections, which should capture both the visual variability of
the task and represent different languages. In the following, we
focus on line-level dataset of western-characters, since these
are more closely related to our proposed dataset. The main
characteristics of those datasets are also reported in Table I.

Commonly-used benchmarks for line-level HTR include the
IAM [47] and the RIMES [48] datasets, both containing lines
in modern languages (English and French, respectively) and
written by multiple authors on regular paper support. The
language used is somewhat constrained, since the writers have
been carefully instructed on what to write: copying English
sentences from the Lancaster-Oslo/Berge corpus [57] in IAM,
and following a template and a script for writing customer
service-themed letters in RIMES.

As for HTR on historical manuscripts, many datasets
have been released to explore different perspectives of the
task. Among those, the most used are the ICFHR14 [52],
ICFHR16 [53], and the ICFHR18 [54] datasets, all pre-
pared for HTR challenges at the International Conference on
Frontiers of Handwriting Recognition (ICFHR). The aim of
ICFHR14 is to explore HTR on historical data rather than
modern ones. Therefore, the dataset contains lines form the
Bentham Papers collection [58], handwritten in English by
few authors, mainly the philosopher Jeremy Bentham and
his collaborators. The ICFHR16 was initially intended to
study HTR on a language that is structurally different from
English, and thus it contains lines from the Ratsprotokolle
collection, handwritten in German by multiple writers in over



three centuries. Finally, the ICFHR18 dataset was designed
to investigate the minimum amount of training data required
to correctly transcribe an entire historical document. For this
reason, the dataset contains documents from many different
collections and time periods, it is written in different lan-
guages (German and Italian), and its test set is divided in
document-specific sets. Moreover, it is worth mentioning the
Rodrigo [55] and Germana [56] datasets. These are large line-
level datasets obtained from two different Spanish books and
written by a single author in a short time-span.

There are also other datasets containing historical
manuscripts, which are of much smaller size and thus can
be used to explore HTR in the case of limited training data
and specific domain. Examples of such datasets are the George
Washington dataset [49], containing English letters by George
Washington (and few parts by a collaborator), and the Parzival
dataset [50], containing a Medieval German poem handwritten
by two writers. Usually, datasets of this kind feature docu-
ments handwritten by a single author in a relatively limited
time-span, during which the handwriting does not change
significantly. Some examples are the Saint Gall dataset [59],
with lines from a Medieval Latin manuscript, the Esposalles
Index and Esposalles Licenses datasets [51], with lines from
Catalan marriages registers, and the Leopardi dataset [12],
with Italian letters by the writer Giacomo Leopardi.

III. THE LAM DATASET

In this section, we analyze the main characteristics of the
proposed dataset. It comes with different splittings to allow
performing classical HTR, on a splitting we refer to as basic
split, and time-dependent HTR, in a setting we refer to as
date-based setting. The main characteristics of these splittings
are reported in Table II.

A. Data Collection and Preparation

The documents used for the LAM dataset come from the
digitized L. A. Muratori collection preserved at the Estense
Digital Library. The collection contains drafts, papers, notes,
and letters handwritten by the Italian historian and his col-
laborators. Some of these documents, or parts of those, are
written in languages different from Italian, which include
Latin, French, and Spanish.

For collecting the dataset, we prepared an ad-hoc on-line
annotation tool. We preferred not to use available commercial
tools to obtain simplicity of use by non-experts, to keep the
data in house before the release of this dataset, and to favor
crowd-sourcing since the tool does not require any license
or subscription to be used. Further details on the developed
platform can be found in the supplementary material.

Two experts were involved in the data preparation. First,
they selected from the considered collection of digitized doc-
uments, only autograph letters by Muratori in Italian, for a total
of 1,171 pages from 72 files edited in a time-span of 60 years.
Then, they annotated the letters at line-level, by providing the
bounding box of each line and its diplomatic transcription.
In the transcription process, stroke-out text, words that are

TABLE II
LAM DATASET SPLITS STATISTICS. THE CHARSET SIZE IS CALCULATED

ON THE TRAINING AND VALIDATION SPLITS.

Total Training Validation Test Charset

Basic split 25,823 19,830 2,470 3,523 89
Date-based setting (leave-decade-out)

1690-1700 25,183 17,205 1,911 6,067 87
1700-1710 22,392 17,205 1,911 3,276 84
1710-1720 21,066 17,205 1,911 1,950 83
1720-1730 25,158 17,205 1,911 6,042 86
1730-1740 22,974 17,205 1,911 3,858 85
1740-1750 23,106 17,205 1,911 3,990 84

Date-based setting (decade-vs-decade)
1690-1700 25,183 5,460 607 19,116 80
1700-1710 25,183 2,948 328 21,907 80
1710-1720 25,183 1,755 195 23,233 77
1720-1730 25,183 5,437 605 19,141 81
1730-1740 25,183 3,472 386 21,325 83
1740-1750 25,183 3,591 399 21,193 81

illegible due to stains and scratches, and special symbols not
representable in Unicode have been replaced with “#”.

Note that each considered file contains letters to a different
correspondent, which was either a family member, a friend, a
professional or an acquaintance of different social extraction
and cultural level, to whom Muratori wrote about many
different topics. This results in a rich and varied language.
The annotation process and subsequent double-checking took
approximately one year and, to the best of our knowledge,
lead to the largest dataset for line-level HTR to date.

B. General Characteristics

The LAM dataset contains a total of 25,823 lines, with
a lexicon of over 23,000 unique words (see Table I). Other
datasets of comparable size feature a rich lexicon as well,
especially those containing text in different languages (e.g. the
ICFHR18 and Germana datasets). In the case of the LAM
dataset, the richness of the lexicon is due to the fact that, in his
letters, Muratori wrote about different topics, mentioned many
different proper nouns (of people and places), and used various
forms of abbreviations for names, titles, and salutations, which
was common in his time to save paper when writing.

As for the visual characteristics, the LAM dataset fea-
tures all the typical time-related challenges of historical
manuscripts. In particular, the paper support used varies con-
siderably from page to page (both in terms of color and
texture), and there are pages with humidity stains, creases,
scratches, and holes. Also the ink used makes the dataset
challenging since there are pages with faded or bled trough
ink, stains, discolorations, and corrosions. Some pages from
the LAM dataset exemplifying the aforementioned challenges
are shown in the supplementary material.

Further characteristics of the LAM dataset are analyzed in
Fig. 2 in comparison with other commonly used benchmark
datasets, both modern and historical, and with a smaller
historical dataset in Italian (the Leopardi dataset). Compared
to other datasets, the lines in LAM have smaller and more
regular height, while the line images width has a more clear
tendency to bimodality. This is due to the fact that, depending
on the content and the addressee, some pages are written in
double-column. Moreover, to save paper, the author commonly
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Fig. 2. Lines height and width distribution in the LAM dataset compared to
other benchmark datasets (top). Number of characters per line distribution in
the LAM dataset compared to other popular benchmark datasets (bottom left).
Average characters pixel width distribution in the LAM dataset compared to
other benchmark datasets (bottom right). Best seen in color.

exploited the entire text column width, which also explains
the clearer regularity in the width of the characters compared
to other datasets. Also in terms of the average number of
characters per line LAM shows regularity, having the majority
of lines with 39 characters (similar to IAM).

To use the LAM dataset for classic HTR, we provide a
basic split consisting of 19,830 lines for training, 2,470 for
validation, and 3,523 for test. The lines have been collected
from different portions of the pages in each of the 72
considered files, of 80%, 10%, and 10%, respectively. This
splitting is intended for exploring HTR on images featuring
the typical challenges of historical manuscripts and a rich and
underrepresented language such as ancient Italian.

C. Date-based Setting

As mentioned above, the documents from which we col-
lected the LAM dataset cover roughly 60 years. For most of
the letters in the files the date in which they have been written
is clearly indicated. Therefore, according to this information,
we were able to separate them into six groups reflecting the
decade. The idea behind this date-based setting is to explore
the effect of the availability of handwritten samples from an
author in different time periods over the recognition of his/her
text in an unseen time period. In a wide time-span as that
considered in the LAM dataset, the handwriting of the author
is likely to change. In this respect, a t-SNE analysis of the
lines in the date-based setting and examples of pages from
the six splits can be found in the supplementary material.

After discarding pages with no date indication (27 out of
1,171 pages), we built two setups that can be used to perform
HTR of the same author, conditioned on time. In the first setup,
referred to as leave-decade-out, the test set contains all the
lines from the pages of a certain decade, while the training and
validation sets contain a proportional amount of lines from the

pages of the other decades (90% and 10%). Note that, for fair
comparison and data balancing, we include the same amount
of lines in the training set and the validation set of each split. In
the second setup, referred to as decade-vs-decade, all the lines
from a decade of choice are used for training and validation,
and all the lines from each other decade separately are used for
test. The size of the subsets and the charset in each date-based
split is reported in Table II.

IV. EXPERIMENTAL EVALUATION

In this section, we report an experimental analysis of the
performance of popular state-of-the-art models and toolkits,
both on the basic split of the LAM dataset and on the
date-based setting. The performance are reported in terms of
Character Error Rate (CER) and Word Error Rate (WER). As
customary in HTR, to calculate the CER and the WER on the
entire test set, we first compute the Edit Distance (at character
level for the CER and word level for the WER) between each
predicted sentence and the corresponding ground truth. This is
the number of substitutions, deletions, and insertions that have
to be applied to the predicted sentence to obtain the ground
truth. Then, we sum up the distances of all samples, divide by
the sum of the ground truth lengths and multiply by 100.

A. Considered HTR Approaches

We consider models following different kinds of architec-
tures for HTR in order to give insights on the possibly more
promising strategy to be applied on the LAM dataset and
guide future research. When available, we used the official
implementation and weights provided by the authors, while
in the other cases, we used our best implementation. All the
models have been trained by following the training protocol
described in the original paper. Note that data augmentation is
not performed in any of the considered approaches to better
highlight the effect of the size of the LAM dataset and the
data variability it captures. For methods requiring an explicit
charset, this has been obtained from the training and validation
subsets of the basic split, and of each of the splittings in the
date-based setting (see Table II).

1) Convolutional-Recurrent Paradigm: Combining CNNs
and RNNs for HTR has been the standard choice for years.
In this analysis we consider models featuring 1D-LSTMs,
since these have been proven to be comparable or superior
to MDLSTMs [3] while being much faster to train [5]. In par-
ticular, we test our implementation of the 1D-LSTM proposed
in [5], which consists of a stack of five convolutional blocks
and five Bidirectional Long Short-Term Memory network
(BLSTM) layers. We also consider the approach proposed
in [4] (referred to as CRNN in the following), which has
a deeper convolutional component but fewer recurrent layers
compared to 1D-LSTM. Specifically, in this variant there are
seven convolutional blocks, two of whom contain rectangular
max-pooling layers to better maintain the aspect ratio of the
text lines, and two BLSTM layers. For both the 1D-LSTM and
CRNN approaches, we additionally consider variants contain-
ing Deformable Convolutions (DefConvs) [60], as proposed



in [12], [29]. Finally, we include in the analysis the default
model available from the popular HTR toolkit PyLaia [61],
which has four convolutional layers and three BLSTM layers.

2) Sequence-to-Sequence Paradigm with Transformers: As
a representative of the sequence-to-sequence paradigm, we
explore Transformer-based approaches, which are more data-
demanding than classical RNN-based solutions. Therefore, by
considering these kind of architectures, we can investigate
whether the size of the LAM dataset allows effectively training
large HTR models. In this respect, we consider the strategy
proposed in [7] (referred to as Transformer in the following).
This architecture exploits a ResNet-101 trained from scratch
and a Transformer encoder and decoder [38] with reduced
parameters. The ResNet produces a feature map that is then
flattened and used as input embeddings for the Transformer
architecture. Moreover, we consider the Base version of the
TrOCR model proposed in [46], which employs Transformer-
like architectures both for image representation [62], [63] and
text generation [38], [41], and exploits large-scale pre-training,
both on typewritten and handwritten lines, before being fine-
tuned on the dataset of interest.

3) Fully-Convolutional Paradigm: Recent approaches to
HTR come with FCNs, establishing state-of-the-art results. In
this work, we consider the Gated Fully Convolutional Network
(GFCN) [33], which preprocesses the input image with four
convolutional layers and then passes the output through five
GateBlocks layers [34]. We also consider three different vari-
ants of the deeper model OrigamiNet [6], containing 12, 18,
and 24 GateBlocks layers, respectively. Moreover, we include
in the analysis the implementation of the approach proposed
in [31] available in the Kaldi toolkit. This model is composed
of six convolutional layers and three time-delay neural layers,
followed by an HMM for text recognition. The architecture
training is divided into two phases. First, a “flat start” model is
trained on images and the corresponding transcriptions. Then,
the trained “flat start” model is used to create alignments
for training a second model, which is the only one used at
inference time. Finally, a 3-gram byte pair encoding language
model is applied to improve the decoding.

B. Evaluation Results

LAM Basic Split. The results obtained by the models included
in the analysis on the basic split are reported in Table III. In
this setting, the models following the convolutional-recurrent
paradigm obtain a CER on average below 4% and a WER
below 12%. The performance improvement given by the use
of DefConvs indicates the importance of a strong image
encoder in this dataset. Among the approaches following the
fully-convolutional paradigm, only OrigamiNet performs on
par with the convolutional-recurrent approaches, and even
performs best in its variant containing 24 GateBlocks. This
can be traced back to the high number of GateBlocks that this
model contains, allowing to better model the context compared
to GFCN and Kaldi, confirming the importance of the image
representation for this dataset. Another observation comes
from the relatively poor performance of the Transformer

TABLE III
RESULTS ON THE TEST SETS OF THE LAM BASIC SPLIT, AND ON THE IAM

AND THE ICFHR14 DATASETS. THE ∗ MARKER INDICATES OUR
RE-IMPLEMENTATIONS.

IAM ICFHR14 LAM

Method #Params (M) CER WER CER WER CER WER

HTR Toolkits
PyLaia [61] 4.8 9.8 32.3 5.1 17.5 4.7 16.5
Kaldi [31] 15.0 7.2 25.0 3.7 14.2 4.7 13.4

HTR Models
1D-LSTM [5] - 8.3 24.9 - - - -
1D-LSTM [5]∗ 9.6 7.7 26.3 4.8 15.3 3.7 12.3
1D-LSTM (w/ DefConv) [29] 9.6 7.5 26.9 3.6 14.3 3.5 11.6
CRNN [4]∗ 18.2 7.8 27.8 3.9 15.3 3.8 12.9
CRNN (w/ DefConv) [29] 18.5 6.8 24.7 3.6 13.9 3.3 11.3
Transformer [7]∗ 54.7 - - - - 10.2 22.0
TrOCR [46] 385.0 3.4 - - - - -
TrOCR [46]∗ 385.0 7.3 37.5 3.5 11.5 3.6 11.6
GFCN [33] 1.4 8.0 28.6 - - - -
GFCN [33]∗ 1.4 8.0 28.6 - - 5.2 18.5
OrigamiNet12 [6] 39.0 5.3 - - - - -
OrigamiNet12 [6]∗ 39.0 6.0 22.3 3.6 14.7 3.1 11.2
OrigamiNet18 [6] 77.1 4.8 - - - - -
OrigamiNet18 [6]∗ 77.1 6.6 24.2 4.0 15.4 3.1 11.0
OrigamiNet24 [6] 115.3 4.8 - - - - -
OrigamiNet24 [6]∗ 115.3 6.5 23.9 5.9 21.3 3.0 11.0

Ground-truth Um.mo Div.mo ed Osseq.mo Ser.re e Sud.o
CRNN (w/ DefConv) Vo.mo div.mo ed Ossegl.mo Ser.r e Sud.o
TrOCR Um.mo Div.mo ed ossequ.mo Ser.re e Sud.o
OrigamiNet24 Um.mo Di.o ed Ossegl.mo Ser.r e Sud.e

Ground-truth da altri # per benefizio delle Lettere,
CRNN (w/ DefConv) da altri MSS.i, per benefizio delle Lettere,
TrOCR da altri Mess.i, per benefizio delle Lettere
OrigamiNet24 da altri MS#.i, per benefizio delle Lettere

Fig. 3. Qualitative results of the best performing models on example
challenging lines from the LAM dataset.

model. This implements an intrinsic language model that is
challenged by the heavy use of rare words and abbreviations
in this dataset. The TrOCR model, which features both a strong
image representation component and an intrinsic language
model pre-trained on a large amount of image-text pairs,
reaches error rates that are comparable with those of the
convolutional-recurrent models after being fine-tuned for 30
epochs on the LAM dataset.

As a further comparison between the LAM dataset and
other existing benchmarks, we evaluate the performance of the
considered models also on IAM and ICFHR14. A performance
drop can be noticed for all models, especially bigger ones,
some of which did not converge in some cases (i.e. Trans-
former and GFCN). This indicates that the large amount of
training data provided by the LAM dataset can contribute to
enable the development of effective models for HTR, similar
to what has been done for other vision-and-language tasks.

Finally, we report the qualitative results of the best perform-
ing models following the three considered HTR paradigms
(CRNN with DefConv, TrOCR, and OrigamiNet24) on chal-
lenging lines of the LAM dataset in Fig. 3. Additional exam-
ples can be found in the supplementary material.

LAM Date-based Setting. As for the leave-decade-out setup



TABLE IV
RESULTS ON THE LEAVE-DECADE-OUT SETUP OF THE DATE-BASED SETTING. THE ∗ MARKER INDICATES OUR RE-IMPLEMENTATIONS.

1690-1700 1700-1710 1710-1720 1720-1730 1730-1740 1740-1750 Average

Method CER WER CER WER CER WER CER WER CER WER CER WER CER WER

HTR Toolkits
PyLaia [61] 6.0 23.3 3.7 13.7 3.1 11.2 3.0 11.5 4.8 16.1 3.9 14.5 4.0 15.1
Kaldi [31] 4.9 19.1 3.0 10.4 2.7 9.7 2.5 9.4 4.5 13.1 3.2 11.4 3.5 12.2

HTR Models
1D-LSTM [5]∗ 5.3 20.9 3.7 12.6 2.8 9.1 2.7 9.0 4.1 14.3 3.6 11.8 3.7 13.0
1D-LSTM (w/ DefConv) [29] 5.0 19.8 3.6 12.1 2.5 8.3 3.1 10.1 3.8 12.3 3.6 12.2 3.6 12.5
CRNN [4]∗ 5.0 20.1 3.5 12.1 2.6 8.8 3.1 10.4 4.3 14.0 3.8 12.7 3.7 13.0
CRNN (w/ DefConv) [29] 4.7 19.0 3.3 11.1 2.2 7.6 2.4 8.3 3.7 12.2 3.4 11.1 3.3 11.6
Transformer [7]∗ 15.2 37.2 18.6 36.5 14.6 28.5 10.0 20.1 19.5 35.7 11.9 25.2 15.0 30.5
GFCN [33] 5.1 18.5 7.4 23.1 3.0 10.8 4.2 14.6 5.5 17.7 4.2 15.4 4.9 16.7
OrigamiNet12 [6] 4.6 18.9 2.8 10.3 2.2 8.0 2.2 8.3 3.4 11.4 3.0 11.8 3.0 11.5
OrigamiNet18 [6] 4.5 18.7 2.8 10.3 2.2 8.1 2.3 8.9 3.5 11.8 2.3 8.9 2.9 11.1
OrigamiNet24 [6] 4.9 20.4 2.9 10.6 2.3 8.2 2.2 8.4 3.3 10.9 3.1 11.6 3.1 11.7
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Fig. 4. Results of OrigamiNet18 in the decade-vs-decade setup of the date-
based setting, both in the scenario in which all the training samples available
for each decade are used (left) and the balanced scenario (right).

of the date-based setting, we report the results of the consid-
ered approaches in Table IV. For all the models, the worst
performance is obtained on the fifth-decade split (1730-1740).
The first and second splits are challenging as well, considering
the performance of GFCN and Transformer on the second
decade, and of all the other approaches on the first decade.
The splits having the third and fourth decade as test set
are instead easier to recognize. In fact, the errors of the
considered approaches on these splits are even lower than
what obtained on the basic split. Arguably, this is due to a
more homogeneous and clear handwriting of the author in his
middle age. Additional to a decade-specific analysis, to express
the overall performance of HTR models to recognize text over
time, we propose to use the average CER and WER on the six
splits. According to these scores, the best-performing model
in this setting is OrigamiNet in its variant with 18 GateBlocks.

To further explore the challenges posed by the date-based
setting, we consider OrigamiNet18 in the decade-vs-decade
setup. The CER values obtained in this experiment are reported
in Fig. 4 (the WER scores are reported in the supplementary
material). Overall, the first and the last two decades are the
most challenging to recognize, while the text produced in
the author’s middle age is easier to recognize. The results
reported in the table also highlight the difficulty in transcribing
documents written at an early age when training on those

written at a late age and vice versa, which is a challenge posed
by the date-based setting. Moreover, to assess whether the
difference in performance can be attributed to the difference in
the number of samples available for each decade, we repeat the
above analysis by using training sets of equal size (artificially
balanced by randomly sampling an equal number of lines for
each decade) and the same test sets as in Table II (further
details are given in the supplementary material). The results
of this analysis are reported in Fig. 4. Despite the expected
numerical variations in the specific CER values, the same
observations made in the case of the released setup apply
also in this case of balanced setup, thus allowing imputing
the challenges emerged to the characteristics of the data rather
than to the training set size.

V. CONCLUSION

In this work, we presented the LAM dataset for line-level
HTR on historical manuscripts, containing more than 25,000
lines. The dataset features letters written in Italian by a single
author over around 60 years, which makes it suitable not only
for research on HTR, but also on handwriting recognition
over time. To this end, the dataset comes with different splits,
reflecting the decade in which the letters have been written.
Quantitative and qualitative analyses of the dataset, both of
its characteristics and performance achievable with commonly
used HTR approaches, highlight the challenges posed by
the LAM dataset, which we hope can make it a valuable
contribution towards the development of effective solutions
to HTR on historical documents. As a further development
of this work, the LAM dataset could be enriched with word-
level annotations, thus increasing the level of supervision and
making it suitable also for the keyword spotting task on
historical manuscripts.
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Fig. 1. Screenshots of the annotation platform developed and used to annotate the LAM dataset.

I. DETAILS ON THE ANNOTATION PLATFORM

In this section, we give further details on the features of the
annotation platform developed to collect the LAM dataset. Our
tool allows the annotator to draw bounding boxes on each line,
which can be eventually rotated, and to annotate each of these
with a textual description. The interface further allows to easily
browse documents in the collection and provides statistics on
the annotation progress of each page. The platform is linked
to the digital library containing the documents of interest (the
Estense Digital Library1, in the case of those used for the
LAM dataset). From such collection, files of documents can

1https://edl.beniculturali.it/

be directly imported into the platform by specifying their IIIF
identifier (see Fig. 1, top left).

The list of imported files is visible on the main page of the
platform, alongside progression bars indicating the portion of
pages in the files that have already been fully annotated (see
Fig. 1, top right). This way, multiple users can collaborate on
the annotation process and monitor their progress. For each
file, we visualize the main metadata and an overview of the
contained pages. For each page, it is indicated the annotation
status, which can be complete, in progress, or not yet started
(Fig. 1, bottom left). Again, this allows multiple users to
collaborate on annotating pages in the same file.

The core of the platform is the annotation interface (Fig. 1,
bottom right). To annotate the pages, the user can rotate
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Fig. 2. T-SNE plots of sample lines from the six time periods in the LAM
dataset. The right plot is obtained with features from the convolutional part
of the CRNN model, while the left plot is obtained with features from the
convolutional part of the 1D-LSTM model. Best seen in color.

the page to align the baseline of each line and then trace
a bounding box around the line to be annotated. The tran-
scription can be inserted in a dedicated text-box and saved.
Previously inserted transcriptions are visible below the image
of the page and can be edited after the first insertion (both
the bounding box and the transcription). Once the page is
fully annotated, it can be “closed” to make its annotations
available for download. Note that, eventually, the pages can
be re-opened for further editing.

The annotations of each file are exported as images of
pages and XML files containing the line-level annotation. For
each line, are indicated the width, the height, the orientation,
and the coordinates of the top-left corner of its bounding
box. This information is employed to extract lines images:
overall, the dataset results in 25,823 JPEG files, which are
on average 658±247 pixels wide and 53±16 pixels high.
Annotations are released as XML files that report the ground-
truth transcription, the indication of the decade in which the
page has been written, and the identifier of the user who
inserted the transcription.

II. FURTHER DATASET ANALISYS

A. Word-level Analysis

In Fig. 3 we report word-level characteristics of the LAM
dataset in comparison with other commonly used benchmark
datasets, both modern and historical, and with a smaller
historical dataset in Italian (the Leopardi dataset). Similar
to what is observed in terms of number of characters per
line and their average width, the LAM dataset exhibits more
evident regularity when compared to other datasets. In fact,
the majority of lines have 7 words (similar to IAM), whose
length is bimodal-distributed.

B. Date-based Setting

The aim of the date-based setting is to allow exploring
single-author HTR over long periods in the scenario in which
samples are available for a specific time-span only. This is
a challenging scenario despite targeting a single author since
their handwriting can change over time, as in the case of the
LAM dataset. This can be observed qualitatively from Fig. 2,

0 5 10 15 20
n. words

7

0 200 400 600
average word width
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Fig. 3. Number of words per line distribution in the LAM dataset compared
to other popular benchmark datasets (left). Average words pixel width
distribution in the LAM dataset compared to other popular benchmark datasets
(right). Best seen in color.

where we report a t-SNE analysis of a subset of text line
images from the six decades. For this analysis, we use the
feature maps from the last convolutional layer of the models
presented in [1] and [2], averaged along the width. The models
have been trained on a large synthetic dataset of 111,465 text
lines in Italian in various fonts, as described in [3]. In both
cases, some clusters can be observed, especially for the lines
from the first and the second decade. Part of the lines from the
other decades also form visible groups (e.g. the fifth decade).
This visualization can help explain the performance of HTR
models in the Date-based Setting. In fact, as reported in the
main paper, the most challenging lines of the setting come
from the first and second decades, whose features are indeed
organized in clusters that are more evident than those of the
other decades.

C. Exemplar Pages from the LAM Dataset

Some examples of pages from which the LAM dataset has
been collected are reported in Fig. 5. The pages have been
grouped in decades as for the date-based setting. Differences
in the handwriting style of the lines contained in the dataset
can be appreciated, which makes the dataset as challenging as
those containing text from multiple authors. Moreover, it can
be noticed that the paper support is damaged (with scratches,
creases, stains), and there are ink stains and bleeding.

III. ADDITIONAL RESULTS

A. Additional Results on the Date-based Setting

In Table I and Table II, we report further details on the
decade-vs-decade analysis described in the main paper. In
particular, we include WER scores, which are in line with
the CER scores and thus remark the characteristics and the
challenges that can be explored within the date-based setting.
Moreover, in Table III we report the characteristics of the
balanced variant of the decade-vs-decade setup of the date-
based setting.

B. Qualitative Results

As a further analysis, we examine the test lines that can be
more challenging for an HTR system, to give some insights on
the source of such challenges. To this end, we select those lines



TABLE I
RESULTS OF ORIGAMINET18 ON THE DECADE-VS-DECADE SETUP (WITH TRAINING SETS OF DIFFERENT SIZE) AND THEN EVALUATED ON THE OTHERS.

1690-1700 1700-1710 1710-1720 1720-1730 1730-1740 1740-1750

Train CER WER CER WER CER WER CER WER CER WER CER WER

1690-1700 - - 3.9 14.7 3.8 14.0 4.3 15.5 6.9 23.2 6.4 23.7
1700-1710 5.8 23.3 - - 3.6 13.3 3.9 14.4 6.6 23.0 6.2 23.2
1710-1720 8.9 33.4 5.2 19.5 - - 4.0 15.2 7.2 24.2 7.4 26.2
1720-1730 7.7 29.6 4.5 17.0 3.3 12.1 - - 5.6 19.3 6.2 21.9
1730-1740 7.3 28.6 4.8 18.8 3.4 13.1 3.2 12.7 - - 4.6 16.7
1740-1750 6.9 26.7 4.5 17.3 3.3 13.0 3.4 12.9 4.2 15.0 - -

TABLE II
RESULTS OF ORIGAMINET18 ON THE DECADE-VS-DECADE SETUP (WITH TRAINING SETS OF THE SAME SIZE) AND THEN EVALUATED ON THE OTHERS.

1690-1700 1700-1710 1710-1720 1720-1730 1730-1740 1740-1750

Train CER WER CER WER CER WER CER WER CER WER CER WER

1690-1700 - - 5.7 21.0 6.5 23.5 7.1 24.3 10.3 33.8 9.5 33.7
1700-1710 7.0 27.5 - - 4.4 16.4 5.0 18.2 7.9 26.9 7.6 27.4
1710-1720 8.3 31.9 5.1 19.3 - - 4.1 15.3 7.2 24.6 7.2 25.7
1720-1730 9.1 34.2 5.9 21.4 4.5 16.0 - - 6.8 22.9 7.6 25.8
1730-1740 8.9 33.2 6.2 23.2 4.7 17.5 4.2 16.1 - - 5.4 19.4
1740-1750 8.5 31.9 5.6 21.1 4.9 18.4 4.7 17.0 5.3 18.5 - -

Ground Truth stampata la mia 3.a Disquisizione de Antiquis Chri= Ground Truth arrivò sino à Borho Tol di Taro # abbia avuto p oggetto
OrigamiNet24 stampata la mia 3.a Disquisizione de Antiquis Chri= OrigamiNet24 arrivò sino a Borgolbal di Daro # abbia avuto Doggetto

Ground Truth stessa Fant.a v’ha un’ insuperabil buio, perché Ground Truth secondo # varie inspezioni Filofiche e Teologi=
OrigamiNet24 stessa Fant.a v’ha un’ insuperabil buio, perché OrigamiNet24 secondo # varie inspazioni Filotofiche e l’olorp.

Ground Truth dar cosı̀ belle composizioni, et in ispendere tanto. Ground Truth da altri # per benefizio delle Lettere,
OrigamiNet24 dar cosı̀ belle composizioni, et in ispendere tanto OrigamiNet24 da altri MS#.i, per benefizio delle Lettere

Ground Truth più purgato di tanti altri, # ma anche per Ground Truth P.S. si crede che il distaccamento fatto da Galljpani, che
OrigamiNet24 più purgato di tanti altri, # ma anche per OrigamiNet24 S. S. Si crede che il distaccamanto Datto da Sallizpani che

Fig. 4. Qualitative results on example lines from the LAM dataset of the best performing model on the basic split. Examples on the right are among the
most challenging (CER>15%).

TABLE III
STATISTICS OF THE BALANCED DECADE-VS-DECADE SETUP OF THE
DATE-BASED SETTING. THE CHARSET SIZE IS CALCULATED ON THE

TRAINING AND VALIDATION SPLITS.

Total Training Validation Test Charset

1690-1700 21,066 1,755 195 19,116 78
1700-1710 23,857 1,755 195 21,907 78
1710-1720 25,183 1,755 195 23,233 79
1720-1730 21,091 1,755 195 19,141 78
1730-1740 23,275 1,755 195 21,325 79
1740-1750 23,143 1,755 195 21,193 77

where the best-performing model, OrigamiNet24, obtained
CER≥15%. Some examples are reported in Fig 4. It can be
observed that the handwriting style makes uppercase letters
more difficult to distinguish. Another issue is represented by
those symbols that cannot be represented in Unicode and thus

have been annotated as #’s. The models struggle to learn to
skip those symbols and transcribe them with combinations of
Unicode characters. From the exemplar images, it can also be
appreciated the differences in the handwriting, which makes
the LAM dataset challenging despite the fact that it contains
text written by a single author.
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Fig. 5. Qualitative examples of pages written in different decades contained in the LAM dataset.


