
The A2iA Multi-lingual Text Recognition System at
the second Maurdor Evaluation

Bastien Moysset∗, Théodore Bluche∗†, Maxime Knibbe∗, Mohamed Faouzi Benzeghiba∗,
Ronaldo Messina∗, Jérôme Louradour∗ and Christopher Kermorvant∗

∗A2iA, 39 rue de la Bienfaisance, 75008 - Paris - France
†LIMSI CNRS, Spoken Language Processing Group, Orsay - France

Abstract—This paper describes the system submitted by A2iA
to the second Maurdor evaluation for multi-lingual text recogni-
tion. A system based on recurrent neural networks and weighted
finite state transducers was used both for printed and handwritten
recognition, in French, English and Arabic. To cope with the
difficulty of the documents, multiple text line segmentations
were considered. An automatic procedure was used to prepare
annotated text lines needed for the training of the neural network.
Language models were used to decode sequences of characters
or words for French and English and also sequences of part-of-
arabic words (PAWs) in case of Arabic. This system scored first at
the second Maurdor evaluation for both printed and handwritten
text recognition in French, English and Arabic.

I. INTRODUCTION

Following the trend existing in other research communities,
the handwriting recognition community has started to organize
international evaluations of the technology ten years ago, and
the number of evaluations keeps increasing. In 2005, the first
evaluations concerned the recognition of isolated words [1]
and, in 2011, the systems have reached a plateau around 5% to
7% error rate [2]. The most recent evaluations are now oriented
toward large vocabulary text line recognition [3][4], in which
the best systems are between 10% and 20% error rate. A step
further has been taken with the Maurdor evaluation campaign
[5], where the complete process of document analysis and
recognition is evaluated on difficult and realistic documents.

In this paper, we describe the system submitted by A2iA
to the Maurdor 2013 evaluation campaign for handwritten and
printed text recognition.

II. THE MAURDOR CHALLENGE

The goal of the Maurdor evaluation campaign [6] was to
evaluate the performance of automatic document processing
systems on a large variety of complex multi-lingual documents,
as show on Figure 1. The complete document processing chain
was decomposed into autonomous modules: document layout
analysis, write type identification, language identification, text
recognition, logical organization and information extraction.
Each module was evaluated in isolation with the ground-truth
value of the data from the previous module in the sequence.
The text recognition modules were evaluated using as input
the co-ordinates of the text zone, the write type of the text and
the language. We describe in this paper our system for this
task and the result of the evaluation. The Maurdor database
was provided to train and evaluate the systems. Official splits
of the database with the number of text zones are presented
on Table I.

Fig. 1: Samples of documents from the Maurdor database.

TABLE I: The Maurdor database : official splits in Train, Dev
and Test sets with the number of text zones for each writing
types and languages

Set Pages
Zones

Printed zones Handwritten zones
French English Arabic French English Arabic

Train2 6 592
141 683

105 002 36 681
57 821 25 773 21 263 18 417 8 530 9 729

Dev2/Test1 1 110
25 663

19 205 6 458
9 908 5 124 4 122 2 857 1 765 1 835

Test2 1 072
25 180

18 907 6 273
11 519 4 131 3 210 3 241 1 450 1 582

Total 8 774
192 526

143 114 49 412
79 248 35 028 28 595 24 515 11 745 13 146

III. TEXT LINE DETECTION

The input of the system was the image of the complete
document with the coordinates of the text zone, its writing type
and its language. Since the zones given in annotation are at
paragraph level, a line segmentation algorithm was required. To
apply the line segmentation algorithm, color and binary images
were first converted to grayscale and rescaled to a resolution

of 300 dots per inch (dpi).

Then, two line detection algorithms were used to get the
boxes corresponding to text lines. To improve the efficiency
of these algorithms, pre-processing of the paragraph images
were performed. However, the recognizer used the images
obtained from the unprocessed 300 dpi grayscale images with
the detected text line boxes, without any denoising.

A. Algorithms

Two line detection algorithms were used in this system. The
first algorithm was based on grouping connected components.
Connected components were extracted from the binarized im-
age after denoising, deskewing and deslanting. Based on their
skeleton and statistical heuristics, the connected components
were grouped into words and text lines.

The second algorithm was based on projection profile. In
this algorithm, the pre-processing step included binarization,
deskewing, removal of background lines, denoising with a
Gaussian filtering, morphological closure (to fill small holes
between components) and background inversion if needed. A
post processing step was also performed to merge lines lying
at the same level.

B. Line segmentation hypotheses

The first and the second line detection algorithms were used
to process handwritten and printed paragraphs, respectively.
To improve the text line segmentation, line segmentation
hypotheses were introduced. Pre-processing was performed
to create several different images of the same paragraph.
For the handwritten paragraphs, the deskewed image from
the paragraph was added. Horizontally stretched and shrinked
images were also added as well as the small unsegmented
paragraphs in case there was just one line in the paragraph.
For the printed paragraphs, the segmentation from both line
detection algorithms were considered. Images with normalized
connected components mean height were also added. This
technique resulted in 4 to 7 line segmentation hypotheses per
paragraph. A recognition step was performed on all these line
hypotheses and the best segmentation alternative was chosen
based on the recognition score and some heuristics. These
heuristics were introduced to encourage the system to keep
a high number of lines and to choose the lines as wide as
possible.

IV. OPTICAL MODEL

The optical model was in charge of computing sequences
of character posterior probabilities from variable-sized images.
Each vector contained character posterior probabilities. The
length of the sequences depended on both the width of the
image and the width of the sliding window of the optical
model.

A. Training data preparation

The annotation of the training data was given at paragraph
level. But the training of the neural network required text line
images with their corresponding transcriptions. We developed
an automatic system [7] to align the line images with the
annotation.

(a) The reference line in the original training set

(b) Nine versions of the reference line with different transfor-
mations: slanting, shrinking and expansion.

Fig. 2: Increasing the training set with image transformations.

a) Text line image annotation: The alignment process
was performed on grayscale images normalized to 300 dpi. The
presence of line breaks in the annotation helped the process.
First, a text line detection was performed on the images of
paragraphs. On each text line, a constrained recognition was
performed with a system trained on text zones containing
only one line of text. This recognition was constrained so
that the system could either recognize one of the line present
in the ground-truth text, or part of a line (which could for
example correspond to a line split in several parts by the line
segmenter), or nothing (unmatched line). The constraints were
encoded using finite state transducers as explained in [7].

Line images in which nothing or just a part of a text line
was recognized were considered as unreliable and discarded. If
several lines share the same line text, the one with the highest
recognition score was kept, the other were discarded. The re-
maining lines were used to train the recognition system which
in turn was used to perform a new constrained alignment. Since
this system was trained on more data, the alignments were
better and more annotated text line images were produced. This
alignment cycle was performed twice and the improvement on
the recognition system are described in the Results section.

b) Noising of training images: For handwriting recog-
nition, some transformations are applied on the images in the
training data. The goal of this technique is to introduce some
variability in the training data to enhance the generalization
capabilities of the neural network [8]. As illustrated in Fig-
ure 2, each image in the training data was first slanted in both
directions, resulting in 3 different images including the original
one. Each of these 3 images was then shrinked and expanded
in the horizontal direction, resulting in a total of 9 images.

B. Multi-Directional LSTM Recurrent neural networks

In our text recognition system, the optical model was a
Recurrent Neural Network (RNN) working directly on the
pixel values. The two-dimensional recurrence was applied on
neighboring pixels using Long-Short Term Memory (LSTM)
cells [9], which were carefully designed to model both local
and scattered dependencies within the input images. Besides,
4 LSTM layers were applied in parallel, one for each possible
scanning direction, and their outputs were combined.

We trained a specific RNN for each one of the six tasks
(each one of the three languages, typed or handwritten), using

TABLE II: Number of hidden (and output) units per layer, used
in the Recurrent Neural Networks. The last line indicates the
total number of free parameters to be optimized.

Handwritten Typed
English French Arabic English French Arabic

Layers:
(1) LSTM 4 4 2 4 4 4
(2) Convolution 12 12 6 12 12 12
(3) LSTM 20 20 10 20 20 24
(4) Convolution 32 32 20 32 32 60
(5) LSTM 100 100 200 100 100 150
(6) Linear 92 110 164 108 136 179

free parameters 547 148 554 366 1 827 908 553 564 564 792 1 268 515

Connectionnist Temporal Classification [10], since an explicit
character segmentation of the data was not available. The entire
neural network architecture was similar to the one initially pro-
posed by [11] and gave state-of-the-art performances for Latin
and Arabic text recognition [12], [13]. More details about how
to train and decode with Multi-Directional LSTM Recurrent
Neural Networks can be found in these previous papers [11],
[13]. Two main modifications to the published architectures
were made. First we adapted the sub-sampling filter sizes to fit
input images at 300 dpi: the input image was first divided into
blocks of size 2×2 (tiling), and the filter sizes of the two sub-
sampling layers that came respectively after the two first LSTM
layers were 2 × 4 (convolution without overlapping). Thus
the RNN predicted posterior probabilities on non-overlapping
window with a 8 pixels width (2×2×2 = 8). Second, we tuned
the hidden layer sizes (number of intermediate activations)
to optimize the performance on the validation dataset. The
number of hidden units for each layer, depending on the
language to recognize, is given in Table II.

An important improvement to the training procedure was
also achieved by using dropout [14], a powerful regularization
technique that consists in randomly sparsifying the intermedi-
ate activations. The details on how to apply dropout on RNNs
are given in [15].

Besides, we followed the principle of “Curriculum Learn-
ing” [16] to optimize the RNN by stochastic gradient descent.
In fact, previous works showed that training a neural network
first on “simple” labeled examples before switching to the
full dataset of interest (which includes noisy and difficult
examples) can lead not only to faster convergence, but also
to better generalization performance [17]. For this reason,
and because the Maurdor’s data were especially difficult , we
did not run gradient descent directly on randomly initialized
RNN models, but on models that were already (pre)trained
on some public datasets that are “clean” to a certain extent
(constant background color, unique digitization process): The
Rimes dataset [18] for all the Latin scripts (French and English,
typed and handwritten), the OpenHaRT 2013 dataset [4] for
handwritten Arabic script, the APTI dataset [19] for typed
Arabic script.

V. LANGUAGE MODELS

To create language models, the training data was normal-
ized and tokenized. For each language and each writing type,
we first gathered all training data published for the Maurdor
evaluation and decided on a character set to be used for

recognition. Characters that had a small number of occurrences
were not modeled; they were either replaced by an equivalent
symbol (e.g. for different round bullet marks we just kept one
of the symbols), or removed from the data (e.g. a telephone
symbol, copyright mark). A particular characteristic of the
Arabic language is that the same character (or letter) may have
different presentation (written) forms depending on its position
in the word (i.e. isolated, initial, middle and final forms). We
modeled this presentation form for the Arabic systems. The
conversion of a word to its presentation forms was performed
with the open-source fribidi [20] algorithm.

The lines that contained characters not retained for mod-
eling were ignored and did not contribute to the language
model. Arabic (respectively Latin) characters that were present
in the Latin (respectively Arabic) data were simply ignored.
Some ligatures (such as “ff”, “fl”, “œ”) are replaced with the
individual characters to simplify the modeling procedure.

After clean-up and normalization of the characters, we
tokenized the words using some of the rules of the evaluation
tool and other rules specific to our systems. Space characters in
the annotations were replaced with an arbitrary symbol, present
in the optical model to signify the inter-word space. This
allowed us to split digit strings into their constituent digits,
reducing the size of the vocabulary of the language model
(LM) and also simplifying the recognition of codes, dates and
numbers. As expected, the bigram counts showed that the digit
“1” was the most frequent at the beginning of a string (34%)
followed by “2” (23%), much similar to what Benford’s law
predicts, but the data is not large enough to closely follow
that distribution. Inter-word space and punctuation symbols
(comma, stop, dash, quotes, , etc.) were all treated as regular
“words” in the LM.

We treated capitalized variants of the “same” word as
different entities, so there were different n-grams in the LM.
This was mainly because some words were quite frequent at
the beginning of a sentence where they appear capitalized.
It could be interesting to assess the effect on performance
if the words were treated as a single entity, and different
parallel paths in the grammar accounted for the different
capitalizations.

The Arabic data was further processed to decompose rare
words into their Part-of-Arabic-Words (PAW). The frequent
words (i.e. words that have appeared more than once) were
kept as they are without PAW decomposition. However, rare
words (i.e. words that have appeared only once) were de-
composed into their PAWs. These decomposed words were
then replaced -in the training data- by their PAWs. Unlike
word separation (i.e. use of an arbitrary symbol as an inter-
word space), a standard space was used as an inter-PAWs
space. This made the concatenation of PAWs into word much
easier during the recognition phase. It was done by simply
removing the standard space. The resulting vocabulary was
an hybrid vocabulary that contained both regular words and
PAWs. The effectiveness of this decomposition procedure was
demonstrated during the development of the Arabic systems,
and confirmed by post-evaluation experiments.

Table III reports the amount of data from handwritten and
printed sources for the three languages and the two writing
types. The values between parentheses indicates the counters

TABLE III: Statistics on the textual data available for training,
for the two writing types and the three languages.

Language Handwritten Typed

English

#Words 98520 (960467) 857873 (956418)
#Vocabulary 7564 (28805) 26757 (30059)
#Hapax 4508 (13144) 12085 (14132)
#Chars 210180 (2506643) 2296309 (2506535)
|charset| 91 107

French

#Words 291069 (1739926) 1441428 (1732628)
#Vocabulary 17109 (43520) 36867 (44746)
#Hapax 9944 (21621) 17713 (22359)
#Chars 698599 (4356676) 3658529 (4357436)
|charset| 109 135

Arabic

#Words 94528 (458952) 365444 (459986)
#Vocabulary 9579 (21594) 18392 (21621)
#Hapax 4478 (6149) 5682 (6164)
#Chars 352406 (1711200) 1360821 (1713256)
|charset| 163 178

after combining the two sources (i.e. handwritten and printed
data sets) under a given character-set. In all cases the inter-
word space was counted as a “word” and figures are after
splitting the digit strings.

It is worth reminding here that for a given language and for
each writing type, the characters/forms set was selected using
the writing type specific dataset only. However, the language
model was generated from both handwritten and printed data
sets. So, in Table III, the statistics between parentheses have
to be considered.

Table III presents a rate of hapaxes (words occurring only
once in the data) of about 50%, which is quite normal for a
reduced database. Arabic had larger character (forms) set than
French and English due to the use of presentation (written)
forms. French had a larger character-set than English due to
accented characters. Printed models had extra characters not
present (or not modeled) in the handwritten part of the corpus.

Trigram LMs were generated for each language and writing
type using Witten-Bell smoothing [21]. For Latin (French and
English) languages and printed type systems, we investigated
the use a hybrid word/character model that can recognize out-
of-vocabulary (OOV) words. This model was more efficient
when a word-level LM demonstrated a low word error rate
(WER). However, experimental results showed a small degra-
dation in the performance.

To give an idea of the complexity of the test set (i.e. Test2),
we re-estimated word language models with the tokenized data
and without inter-word space symbol and did the same for the
test corpus to compute the perplexity and the hit-ratio of the n-
grams (the number of times the n-gram is present in the LM).
We preferred to use these LMs than those used in the submitted
system, because the perplexity value would not make sense in
the case of modeling with the inter-word spaces. Table IV
reports the perplexity, the out-of-vocabulary words percentage
and the hit-ratio for each system.

The ratio of OOV words was quite low (to some extent
due to splitting the digit strings) and the language models also
presented relatively low values for the perplexity. It can be
expected that most of the difficulty in recognizing the test data
comes from the variability in the images.

TABLE IV: Perplexity (PPL), out-of-vocabulary rate (%OOV)
and n-gram hit-ratio estimated on the test data (Test2).

Language Type PPL %OOV %Hit-Ratio
3-gram 2-gram 1-gram

English PRN 111 3.9 37.1 41.8 21.1
HWR 66 4.5 49.7 35.1 15.2

French PRN 48 3.6 54.7 31.9 13.4
HWR 73 3.9 48.6 36.6 14.7

Arabic PRN 146 11.2 31.8 33.9 34.3
HWR 134 8.4 29.5 44.9 25.6

VI. DECODING

The decoding was performed using the Kaldi toolkit [22].
The decoder searched a graph based on Weighted Finite-
State Transducers (WFST), composed of the main system
components.

The RNN produced a sequence of characters/forms predic-
tions, that could be constrained with a lexicon and a language
model to recognize the most likely sequences of valid words.
System components could be represented as WFSTs, and then
composed to create the decoding graph, as explained in [23].

We adopted an hybrid Hidden Markov Model (HMM) -
RNN approach. Each RNN output class (character, or form,
plus white-space and blank) was represented by a one-state
HMM, with a self-loop and an outgoing transitions. HMM
state emission likelihoods were estimated by dividing RNN
class (i.e HMM state/character) posteriors p(s|x) (where s is
the state/character and x is the observation) by the class priors
p(s)κ scaled by a tunable factor κ. Class priors were estimated
using the training dataset. The HMMs were transformed into
a WFST H .

The lexicon FST L transformed a sequence of characters
and blank symbols into words. We took into account the blank
symbol (the “no-character” prediction) in the structure of the
WFST. In the decomposition of the word, we allowed to read
an optional blank symbol between two characters. However,
when a character was doubled in a word, the blank transition
became mandatory.

The language model was created with the SRILM
toolkit [24] and transformed into an WFST (G) with Kaldi.

Once built and composed, the final FST HLG was the
decoding graph, taking as inputs the character - plus blank -
predictions provided by the optical model and outputting the
recognized sequence of words.

VII. RESULTS

The official results for the three top systems (A2iA, RWTH
and LITIS) are shown in Figure 3. RWTH (Aachen, Germany)
submitted a system based on a tandem RNN/HMM [25], and
did not submit a system for the recognition of printed text.
The system of the LITIS (Rouen, France) was also based on
HMMs and feature extraction [26]. Results reported in Figure 3
confirm the position of recurrent neural networks as the current
state-of-the-art for text recognition, with a significant gap with
respect to the pure HMM based approach.

To illustrate the improvement of our system with more
training data and with the work presented in this paper,

Fig. 3: Official results of second the Maurdor evaluation :
word error rate of the top three systems (A2iA, RWTH and
LITIS), on the second test set (Test2), for printed (PRN) and
handwritten (HW) recognition in French (FR), English (EN)
and Arabic (AR).

TABLE V: Evolution of RNN performance after each loop of
automatic data annotation on the handwritten English subset.

RNN training set # of training lines word error rate
Single lines 7310 54.7%
First step of automatic location 10570 43.8%
Second step of automatic location 10925 35.2%

Total number of lines (without lo-
cation)

11608 -

Figure 4 brings the results of the best systems in the first
and in the second evaluation on the first test set (Dev2). On
average, the error rate was divided by a factor two between
the two evaluations.

This significant reduction of the error rate is partly due to
the increase in the number and the quality of line snippets used
for training the optical model, as described in Section IV-A.
Extracting line segmentation alternatives (c.f. Section III-B)
also improved the performance of the system. Language mod-
els in general were improved by the augmentation in the
amount of data available to train them and also by careful
cleaning up and tokenization of the data. For Arabic sys-
tems, the use of hybrid language models (c.f. Section VII-B)
improved the results, in particular for printed system. The
reduction in WER is more important for printed data, as the
quality of the RNN predictions profited the most from the
data preparation. Handwriting remains more challenging as the
variability is much higher (but we expect the performance to
improve with more training data). Overall, the error rates are a
bit lower than in the final campaign; we observed a difference
in the distribution of the test data sets, where the first one
was more similar to the training set, which could explain that
difference.

The following sections describe the contribution of the
different methods we use in our system.

Fig. 4: Comparison of the word error rate of the best systems
of the first evaluation (RWTH, A2iA and Anonymous) and the
A2iA system of the second evaluation on the test set of the
first evaluation.

TABLE VI: WER of Arabic printed and handwritten systems
using word and hybrid (word+PAW) LMs.

System Dev2[%] Test2[%]
word LM hybrid LM word LM hybrid LM

Printed 19.1 17.3 26.4 22.6
Handwritten 31.0 29.2 30.5 29.5

A. Impact of the training data preparation?

Table V shows the importance of the training data prepa-
ration explained in Section IV-A for training the English
handwriting recognizer. Two cycles of constrained text line
alignment were performed. The results show an increase of
the number of training lines from 7310 to 10925. Moreover,
the alignement on multi-line paragraphs helped the system to
better recognize large paragraphs. The second loop did not
increase much the number of lines but the quality of the
alignments was better. In this case, training data preparation
helped to lower the word error rate from 54.7% to 35.2%.

B. Language models (LM) with part of Arabic word (PAW)

To evaluate the contribution of PAW, experiments with
systems that differ only by the type of LM were conducted.
Two types of LMs were compared, the word LM and the hybrid
LM generated using the hybrid vocabulary (word+PAW) as
explained in Section V. Table VI reports the results for both
printed and handwritten Arabic systems, on both Dev2 and
Test2 datasets. LMs for systems evaluated on the Dev2 dataset
are generated using Train2 dataset only.

Results show that systems using hybrid LMs consistently
outperformed those using word LMs, in particular for printed
text.

C. Impact of the text line detection alternatives

We assessed the impact of line segmentation alternatives,
described in Section III-B. The results are shown in Table VII.
We observe that while the substitution and insertion rates show
just a little increase between the system with alternatives and

TABLE VII: Improvement due to text line segmentation alter-
natives.

Type Language Del. Ins. Sub. WER.

Without alternatives

French 5.9% 3.0% 16.7% 25.6%
Hand English 13.6% 5.5% 23.6% 42.7%

Arabic 7.5% 4.8% 20.9% 33.3%
French 12.6% 1.7% 5.2% 19.5%

Printed English 21.6% 1.9% 4.0% 27.5%
Arabic 7.0% 1.5% 13.7% 22.2%

With Alternatives

French 4.1% 2.9% 15.2% 22.2%
Hand English 8.3% 5.8% 21.1% 35.2%

Arabic 6.6% 3.5% 19.8% 29.8%
French 5.4% 1.1% 4.8% 11.3%

Printed English 5.8% 1.8% 5.2% 12.8%
Arabic 6.2% 2.6% 14.0% 22.8%

the system without alternatives, the deletion rate is multiplied
by 2 or 3 when there is no alternatives. This can be explained
by a poor line segmentation on some paragraphs. If two lines
were merged or if a line was not detected, deletion inevitably
occured. Giving several line segmentation hypotheses to the
system helped to alleviate this problem.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we described the multi-lingual text recog-
nition system developed by A2iA during the Maurdor eval-
uation campaigns. Based on recurrent neural networks and
weighed finite-state transducers, this system was successfully
applied to both printed and handwritten text recognition in
French, English and Arabic. Thanks to thorough training data
preparation, multiple line segmentation hypotheses and hybrid
character/word (and PAW for Arabic) language models, the
error rate was divided by a factor two on average between the
first and the second evaluation.

The main challenge on the documents from the Maurdor
database is now to develop a successful complete text recogni-
tion system which interconnect the Document Layout Analysis
module and the text recognition module.

ACKNOWLEDGMENT

This work was partially funded by the French Defense
Agency (DGA) through the Maurdor research contract with
Airbus Defense and Space (Cassidian) and supported by
the French Grand Emprunt-Investissements d’Avenir program
through the PACTE project.

REFERENCES

[1] V. Märgner, M. Pechwitz, and H. El Abed, “Arabic Handwriting
Recognition Competition,” in International Conference on Document
Analysis and Recognition, 2005.

[2] V. Märgner and H. El Abed, “ICDAR 2011 – Arabic Handwriting
Recognition Competition,” in International Conference on Document
Analysis and Recognition, 2011.

[3] E. Grosicki and H. El-Abed, “ICDAR 2011: French handwriting recog-
nition competition,” in International Conference on Document Analysis
and Recognition, 2011.

[4] A. Tong, M. Przybocki, V. Märgner, and H. E. Abed, “NIST 2013 open
handwriting recognition and translation (openhart’13) evaluation,” in
International Workshop on Document Analysis Systems, 2014.

[5] S. Brunessaux, P. Giroux, B. Grilheres, M. Manta, M. Bodin,
K. Choukri, O. Galibert, and J. Kahn, “The maurdor project - improving
automatic processing of digital documents,” in International Workshop
on Document Analysis Systems, 2014.

[6] I. Oparin, J. Kahn, and O. Galibert, “First Maurdor 2013 Evaluation
Campaign in Scanned Document Image Processing,” in International
Conference on Acoustics, Speech, and Signal Processing, 2014.

[7] T. Bluche, B. Moysset, and C. Kermorvant, “Automatic Line Seg-
mentation and Ground-Truth Alignment of Handwritten Documents,”
in International Conference on Frontiers of Handwriting Recognition,
2014.

[8] P. Simard, D. Steinkraus, and J. Platt, “Best practices for convolutional
neural networks applied to visual document analysis,” in International
Conference on Document Analysis and Recognition, 2003.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[10] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: Labelling unsegmented sequence data with
recurrent neural networks,” in International Conference on Machine
Learning, 2006.

[11] A. Graves and J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” in Conference on Neural
Information Processing Systems, 2008.

[12] F. Menasi, J. Louradour, A.-L. Bianne-Bernard, and C. Kermorvant,
“The A2iA French handwriting recognition system at the Rimes-
ICDAR2011 competition,” in Document Recognition and Retrieval
Conference, 2012.

[13] T. Bluche, J. Louradour, M. Knibbe, B. Moysset, F. Benzeghiba,
and C. Kermorvant, “The A2iA Arabic Handwritten Text Recognition
System at the OpenHaRT2013 Evaluation,” in International Workshop
on Document Analysis Systems, 2014.

[14] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2012.

[15] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout
improves recurrent neural networks for handwriting recognition,” in
International Conference on Frontiers of Handwriting Recognition,
2014.

[16] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in International Conference on Machine Learning, 2009.

[17] J. Louradour and C. Kermorvant, “Curriculum learning for handwritten
text line recognition,” in International Workshop on Document Analysis
Systems, 2014.

[18] E. Grosicki and H. ElAbed, “ICDAR 2009 handwriting recognition
competition,” in International Conference on Document Analysis and
Recognition, 2009.

[19] F. Slimane, R. Ingold, S. Kanoun, A. M. Alimi, and J. Hennebert, “A
new arabic printed text image database and evaluation protocols,” in
International Conference on Document Analysis and Recognition, 2009,
pp. 946–950.

[20] “GNU FriBidi.” [Online]. Available: http://fribidi.org
[21] I. Witten and T. Bell, “ The zero-frequency problem: Estimating

the probabilities of novel events in adaptive text compression,” IEEE
Transactions on Information Theory, vol. 37, no. 4, 1991.

[22] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The Kaldi Speech Recognition Toolkit,” in
Workshop on Automatic Speech Recognition and Understanding, 2011.

[23] M. Mohri, “Finite-State Transducers in Language and Speech Process-
ing,” Computational Linguistics, vol. 23, pp. 269–311, 1997.

[24] A. Stolcke, “SRILM – An Extensible Language Modeling Toolkit,” in
International Conference on Spoken Language Processing, 2002.

[25] M. Kozielski, P. Doetsch, M. Hamdani, and H. Ney, “Multilingual off-
line handwriting recognition in real-world images,” in International
Workshop on Document Analysis Systems, 2014.

[26] K. Ait-Mohand, T. Paquet, and N. Ragot, “Combining structure and
parameter adaptation of HMMs for printed text recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2014.

