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Abstract—This paper describes the Arabic handwriting recog-
nition systems proposed by A2iA to the NIST OpenHaRT2013
evaluation. These systems were based on an optical model using
Long Short-Term Memory (LSTM) recurrent neural networks,
trained to recognize the different forms of the Arabic characters
directly from the image, without explicit feature extraction
nor segmentation. Large vocabulary selection techniques and n-
gram language modeling were used to provide a full paragraph
recognition, without explicit word segmentation. Several recogni-
tion systems were also combined with the ROVER combination
algorithm. The best system exceeded 80% of recognition rate.
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I. INTRODUCTION

Handwritten Arabic writing is challenging for automatic
recognition systems. This handwriting is highly cursive and
the word segmentation is difficult due to the presence of space
within words. The written language is inherently ambiguous
due to the absence of vowels, and it contains many small marks
(diacritics) which are used to disambiguate the different possi-
ble meanings. Finally, the Arabic language is morphologically
rich, which results in a very large number of possible word
forms.

International evaluations of handwritten Arabic recognition
systems have been organized since 2005, first on a very simple
task: small vocabulary isolated word recognition [1]. On this
task, the systems have reached a plateau around 7-8% error rate
[2]. The evaluations are now oriented toward large vocabulary
text line recognition, since the first OpenHaRT evaluation in
2010 [3].

We present in this paper the systems developed at A2iA
for the OpenHaRT2013 evaluation [4]. In 2010, A2iA submit-
ted systems based on word segmentation using a contextual
Hidden Markov Model (HMM) with a sliding window feature
extraction [5]. In 2013, the word positions were not available:
the systems had to perform a full text line recognition. The
systems developed by A2iA for the 2013 evaluation were based
on recurrent neural networks and used large vocabulary recog-
nition techniques: large lexicon optimization, language models
and system combination at sentence level. The different aspects
of these systems are described in the following sections.

II. DATA AND TASK DESCRIPTION

The OpenHaRT evaluation series focuses on recognition
and translation technologies of Arabic script in document im-
ages. For this evaluation, A2iA only addressed the Document

Fig. 1. Two examples of documents from the OpenHaRT dataset.

Image Recognition (DIR) task which measures the system
capability in recognizing the text in the document image given
the text line segmentation.

The documents provided for the evaluation, shown in
Figure 1, consisted in single pages containing one or several
paragraphs of handwritten text copied from an electronic
source. This source could either be from the news, which
makes the textual content less spontaneous compared to the
Rimes database [6] for example, or from the web, which is
less formal.

The documents were written by 455 native Arabic scribes,
originating from 16 different countries, as shown on Figure 2.
Each scribe contributed to the creation of 120 documents on
average, as shown on Figure 3. The test set was composed of
documents written by scribes who already contributed to the
training set as well as unknown scribes.

The writing conditions of the documents were rather favor-
able to automatic recognition systems: the scribes wrote many
documents (up to 600) and some of them can be found both in
the training and in the evaluation set. This situation is closer to
what one can encounter in historical document recognition, for
example census indexation, where the same scribe has written
many documents, than in daily incoming mail processing,
where each document is produced by a different writer.

III. SYSTEM COMPONENTS DESCRIPTION

A. Image preprocessing

Several algorithms were tested to clean the text line images.
In particular, we applied skew and slant correction, morpho-
logical denoising, morphological background line removal and



Fig. 2. Geographic origin of the scribes (country where they were born).

Fig. 3. Histogram of frequencies of the number of documents produced by
the same scribe.

removal of ascenders and descenders belonging respectively to
the lower and upper text lines. Preprocessing has been done
both on images used for the training and for the decoding.
However, none of the preprocessing, tested either in isolation
or in combination, improved the recognition error rate on a
validation set. Therefore, the final system does not include
any preprocessing algorithm. We suspect that the database
was large enough and homogeneous across the training and
test sets, in terms of slant, noise and rules lines, so that the
denoising and pre-processing was not needed.

B. Optical Model: Multi-Directional LSTM RNN

At the heart of the text recognition system, the optical
model is in charge of estimating the probability of all symbols
at different locations sampled accordingly to the decoding
direction. All the symbols belong to a predefined set containing
the symbol of the alphabet of the target language, the digits and
the punctuations marks. The task of training a function which
maps an image (2D signal) to a 1D sequence of symbols,
a.k.a. “Temporal Classification”, is different from the static
classification problems in that the alignment between the input
pixels and the target sequence is unknown. In practice, it
happens when the segmentation of each single symbol is not
available or is too complex. In [7], the author showed how
to effectively sum the contribution of all possible alignments
and compute the average Negative Log Likelihood (NLL) of
the target sequences, as well as the derivatives. It allows to
perform gradient descent and train neural networks that output
framewise output probabilities (one normalized value for each
symbol and each frame).

Our optical model was a Recurrent Neural Network (RNN)
with 2D Long Short-Term Memory units (LSTM) [8] to model

both local and scattered dependencies. We used the traditional
LSTM units without the so-called peephole connections [9],
because preliminary experiments showed that this modeling
trick did not improve the results and sometimes made training
unstable. However peephole connections could be useful for
other applications, e.g. when the goal is to finely discriminate
between frequencies in periodic patterns.

We used the network architecture described in [10], with
exactly the same filter sizes that are well suited to images
in 600 dpi. The RNN was Multi-Directional, which means
that four separate LSTM layers were used to propagate the
information in the 4 possible directions. In our CPU implemen-
tation, the recurrences in the four directions were computed on
four different threads. This simple speed-up trick was welcome
given that RNNs were relatively long to train, due to the fact
that recursive operations are costly.

1) RNN optimization details: We trained the RNN to rec-
ognize all symbols in the training data, as well as an additional
special symbol which stands for the blank, as described in [7].
Besides, we observed that training directly on located lines
produces an awkward behaviour of the training process. The
training cost function does not really decrease until a large
number of updates, and sometimes it does not at all. One of
the main reasons is that aligning long sequences is impossible
at the beginning of the training process, when the RNN output
probability values are uninformative. A natural solution was to
train RNN first on isolated words, and then on lines. This two-
step training schedule greatly helped to reduce convergence
times and enabled to improve accuracy. The idea of learning
first on easiest samples before learning on everything has
already be shown to be efficient with Stochastic Gradient
Descent (SGD) [11]and has been further developed for training
recurrent neural networks in [12].

We trained up to 11 RNN Optical Models with a view to
combining them as described in section V. All these RNNs
were first initialized randomly using a Gaussian distribution
with 0.1 standard deviation, and picking a different random
seed for each RNN. Then all these RNNs were trained by
running SGD on the NLL of target sequences with a constant
learning rate of 0.001.

2) RNN training data: In the first training step, which con-
sisted in training on isolated words, all the RNNs were trained
on different subsets of data (randomly chosen and all disjoint).
Then in the second training step, which consisted in training
on lines, we used all the data available in ”Phase 1/2/3 -
Training” [4], iterating on lines in a pseudo-random order.
To perform early-stopping and model selection, we used the
”Phase 1 - Eval” set. We observed that among the 11 RNNs
we trained, two of them were performing significantly worse:
we decided to discard them from further combination.

We used the bidi algorithm [13] to convert strings of Arabic
characters into strings of Arabic forms, and used these forms
as target labels. The motivation was to exploit well-established
prior knowledge about the Arabic script, by using labels that
are more representative of the visual content. We also flipped
the line images horizontally so that the decoding direction
is coherent with the reading order and with direction of the
language model.

Finally, note that 2D-LSTM RNN [10] did not rely on an



LM ORDER SMOOTHING PPX
WITTEN-BELL 1180

3-gram WITTEN-BELL INTERPOLATED 1149
KNESER-NEY 1125
KNESER-NEY INTERPOLATED 975

4-gram KNESER-NEY INTERPOLATED 991

TABLE I. PERPLEXITY OF DIFFERENT LM ON THE PHASE 1 EVAL
DATA.

ad hoc feature extraction: they were designed to be directly
fed with 2D structure such as images. The only operation
on the original input images was the standardization of pixel
values. They were originally in the range [0,255], and it was
empirically observed that SGD was more effective when inputs
were centered and within a sane range. Pixel values were
normalized by subtraction of the mean and division by the
variance, so as to have zero mean and unit variance. The
empirical mean and variance were computed on a subset of
training images.

C. Vocabulary selection and Language modeling

The importance of using statistical n-gram language models
in handwritten recognition systems has been demonstrated in
several studies [14] [15]. To improve the quality of these mod-
els, the available text has to be first cleaned and normalized.
This normalization consisted of applying some basic rules,
including diacritics removal, punctuation marks and brackets
from words separation, removing words with noisy characters
(i.e., characters that are not supported by the recognizer),
Lam-Alif normalization (converting the different written forms
of the ligature Lam-Alif to their simple written forms), and
splitting numbers into separate digits.

Given the characteristics of the OpenHaRT training data,
which was composed of three sets (Phase 1, 2 and 3) with
different sizes and potentially different lexicons, the vocabu-
lary was selected using the technique described in [16]. The
count (frequency) C(wi) of a word wi was estimated as a
linear combination (interpolation) of word counts C(wik) (i.e.
unigrams) over the three data sets:

C(wi) =

K∑
k=1

λkC(wik) (1)

where K was the number of data sets. The weights λk were
optimized using EM algorithm to minimize the perplexity on
the held-out data which is composed of the DevTest Phase
1 and 2. A set of 60K words was then selected based on
their counts (frequencies). The Out-of-Vocabulary (OOV) rate
estimated on the Eval data set (Phase 1) was equal to 9%.
This vocabulary was used to build statistical n-gram language
models for both constrained and unconstrained conditions.

For the constrained condition, several language models
with different order and smoothing techniques were generated.
Table I reports the perplexity of these models on the Eval
data set Phase 1. No pruning was performed. The interpolated
Kneser-Ney 3-gram model performed the best. This model was
then converted to a grammar FST to be used in the Kaldi
decoding graph.

With respect to the unconstrained condition, the lan-
guage model was generated using only the Arabic GigaWord

SOURCE NB OF TOKENS INTER. COEFF.
AFP 121M 0.10
HYT 187M 0.46
NHR 149M 0.21
UMH 1M 0.10
XIN 34M 0.13

TABLE II. NUMBER OF TOKENS AND INTERPOLATION COEFFICIENTS
FOR A TRIGRAM LANGUAGE MODEL.

database 1. This database consists of five different Arabic news
sources (afp, hyt, nhr, umh and xin). These sources differ by
their sizes and their relevance to the target data (OpenHaRT
data). In such training condition, the best practice is to build
a language model by interpolating several source-dependent
language models.

The text from these sources was first normalized using
the rules described above. Language models with different
order were then generated for each data source using Kneser-
Ney smoothing, and an interpolated LM was finally generated.
Interpolation coefficients were estimated on a development
data composed of the three OpenHaRT training data sets.

Table II reports the number of tokens (after text normaliza-
tion) and the estimated interpolation coefficients for a trigram
language model.

Due to computational constraints, in particular the limited
memory size, the interpolated big LM was severely pruned
using entropy pruning scheme [17]. However, in [18], it has
been shown that such pruning techniques with a Kneser-
Ney smoothed LM might results in a poor language model
quality. This is because in the Kneser-Ney smoothed LM, the
probability of a word in the lower-order model is not estimated
according to the maximum likelihood criterion, but according
to the number of different contexts in which the word appears.
As a remedy to this issue, an entropy pruning variant, proposed
in [19] and implemented in the SRILM toolkit, was applied.
In this case, a target language model is used to estimate the
lower-order word probabilities. This model should not be a
Kneser-Ney model. For the A2iA system, the target language
was trained on the OpenHaRT data sets using Witten-Bell
smoothing.

IV. DECODING

The decoding was performed using the Kaldi toolkit [20],
which is based on Finite-State Transducers (FST). This pro-
cedure required the construction of a decoding graph that
integrates the main system components.

A. Decoding graph construction

The recurrent neural network provided a sequences of
predictions at character (or Arabic forms) level. These pre-
dictions were combined with a lexicon and language model to
produce the final recognition result. In order to achieve this,
we composed Finite-State Transducers (FST) and used Kaldi
to find the best transcription from the character predictions.

HMM transducer: Each character or form was repre-
sented as an Hidden Markov Model (HMM) with only one
state, a self-loop transition, and a transition to the next model.
The emission model of the HMMs was the RNN.

1LDC Catalog No.:LDC2006T02



Lexicon FST: This FST transformed a sequence of
characters and blank symbols into words. We took into account
the particular behavior of the last layer of the RNN (the so-
called Connectionnist Temporal Classification (CTC) layer) in
the structure of the FST. Each character was modeled as one
transition preceded by an optional transition, which input is the
blank symbol and output is ε . When a character was doubled in
a word, the blank transition is not optional anymore. Note that
for arabic, the decomposition of a word into presentation forms
was performed with the open-source fribidi [13] algorithm.

Grammar FST: The language model was created with
the SRILM toolkit [21] and transformed into a FST with Kaldi.

B. Decoding strategies

Once built and composed, the final FST was a decoding
graph, taking as input the characters - plus blank - predictions
provided by the optical model and outputting the recognized
sequence of words. We used the decoder provided within the
Kaldi toolkit.

An HMM-based recognition system expected likelihoods
p(observation|state), while the RNN output are poste-
riors p(state|observation). We divided the state posteri-
ors by the state priors, weighted by 0 < α < 1 :
p(state|observation)/p(state)α.

In practice, we did not have the prior for the blank label.
We explored two strategies. First, we estimated the priors as
the average of the posteriors in the training set. We observed
that the blank label had a high frequency (almost 80%). The
results with this method showed a high number of deletions.

In an attempt to reduce the deletion rate, we adopted a
second strategy. It consisted in assigning a fixed prior for the
blank label, p(blank) = κ, and an uniform prior for the other
labels p(label 6= blank) = 1−κ

Nlabels
. This model yielded a lower

deletion rate, at the expense of a higher global word error rate.
This kind of model was useful when combined with other
systems.

Two kinds of decoding were performed, corresponding
to the two evaluation constraints. The first one was for the
constrained evaluation, where only OpenHaRT data are used
to build the trigram language model - which thus has a limited
size. The decoding could be performed in a single pass.

For the unconstrained evaluation, the language model
was significantly larger, so we first extracted lattices using a
unigram LM, which we rescored with the full trigram.

V. SYSTEM COMBINATION

Overall, 9 RNNs were trained and kept, three of which
explicitly model spaces between words. We had two “prior
models” (estimated from training set and blank-penalty). The
accuracies of individual systems are reported on table III.

We used the ROVER technique [22] to combine the recog-
nition results of the systems. One option was to include all
systems in the combination. This combination yielded 76.0%
accuracy, which is a 1% absolute improvement over the best
systems.

A second option was to try to select a subset of all systems.
Indeed, all systems were not equally useful in compensating

RNN PRIORS ACCURACY

Without space label
RNN1 training set 74.8%
RNN2 training set 74.9%
RNN3 training set 75.0%
RNN4 training set 73.9%
RNN5 training set 74.0%
RNN6 training set 75.0%
RNN1 blank penalty 72.5%
RNN2 blank penalty 72.5%
RNN3 blank penalty 73.2%
RNN4 blank penalty 71.1% *
RNN5 blank penalty 72.1%
RNN6 blank penalty 73.3%

With space label
RNN7 training set 75.0% *
RNN8 training set 75.0% *
RNN9 training set 75.0% *

ROVER Combinations
All systems 76.0%
Selected systems (*) 76.7%

TABLE III. ROVER COMBINATION (SYSTEMS MARKED WITH *
CORRESPOND TO THE SELECTED COMBINATION)

for the errors of the others. Moreover, running 15 systems
in order to combine their output was time-consuming. We
adopted an heuristic iterative approach. In the first pass, we
added each system in turn to the combination, in descending
order of accuracy. If the resulting combination improved the
accuracy, we kept the considered system in the combination
and record the relative improvement brought. Otherwise, we
discarded it. We repeated the process in subsequent passes,
ordering systems by their relative improvement rather than
accuracy, until no system is thrown away.

We do not argue that the combination obtained by this al-
gorithm is the best possible one. In particular, we observed that
the order in which the systems are added in the combination
has an effect on the resulting accuracy. We may throw away
some systems too soon, and a more elaborate search strategy
could probably result in a better combination. Yet this method
brought the accuracy up to 76.7% on Phase 1 - Eval, improving
the previous result by 3% relative.

VI. RESULTS

The recognition rates of the A2iA systems at the 2013
evaluation are shown on Table IV. According to NIST rules,
the results of the other systems in the evaluation can not be
reported in this paper but can be found on the NIST web
site [4] or in each participant’s paper [23].

The first conclusion is that the recognition level has been
greatly improved since the 2010 evaluation. In 2010, the best
A2iA system reached a recognition rate of 62.3%, whereas in
2013 it reached 81.6% in the same conditions (unconstrained).

Second conclusion, the combination of several recognition
systems improved the recognition rate from 79.4% to 79.9%,
which is somewhat of a limited improvement considering the
burden of training and combining several systems. This result
can be explained by the training of the RNN : after a different
initialization and training on different sets of words, they were
trained on the same set of lines. They may have converged
to very similar systems, not counterbalancing the recognition
errors in a combined system.



System HART13 Eval
Newswire Web All

Single RNN constrained 82.9 75.7 79.4
Multiple RNN constrained 83.4 76.2 79.9
Single RNN unconstrained 86.4 76.6 81.6

TABLE IV. RECOGNITION RATES OF THE DIFFERENT A2IA SYSTEMS
AT THE OPENHART 2013 EVALUATION.

Fig. 4. Recognition results under different writing conditions.

The detailed results reveal that the documents copied
for news sources are better recognized and also take more
advantage of larger language models than text form web
sources. This result can be explained by the fact that texts
from the web are less formal, therefore more difficult to capture
with language models, making their recognition by the whole
system more complicated.

The recognition results under different writing conditions
are shown on Figure 4. The results are conform with what was
expected : the recognition is better when the text is carefully
ink-written on unruled paper. However, the difference with
other writing conditions (pencil, ruled paper and fast writing)
is limited : it seems that the database was large enough to learn
the different writing conditions efficiently.

VII. CONCLUSION

This paper describes the systems submitted by A2iA to the
Arabic handwriting recognition evaluation OpenHaRT2013.
This system used an optical model based on recurrent neural
networks and many techniques borrowed from large vocabu-
lary speech recognition: large vocabulary selection, language
models interpolation, ROVER system combination. The recog-
nition rate has been greatly improved since the first evaluation
in 2010 and exceeded 80%. Further improvement can be found
in out-of-vocabulary word recognition and in better modeling
texts coming form web sources.
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